scholarly journals Antifibrotic effects of low dose SGLT2 Inhibition with empagliflozin in comparison to Ang II receptor blockade with telmisartan in 5/6 nephrectomised rats on high salt diet

2022 ◽  
Vol 146 ◽  
pp. 112606
Author(s):  
Shufei Zeng ◽  
Denis Delic ◽  
Chang Chu ◽  
Yingquan Xiong ◽  
Ting Luo ◽  
...  
2002 ◽  
Vol 283 (1) ◽  
pp. R243-R248 ◽  
Author(s):  
Jennifer M. Sasser ◽  
Jennifer S. Pollock ◽  
David M. Pollock

To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 ± 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 ± 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 ± 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by ∼50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.


2008 ◽  
Vol 295 (2) ◽  
pp. R381-R387 ◽  
Author(s):  
Valerio G. Barauna ◽  
Flávio C. Magalhaes ◽  
Jose E. Krieger ◽  
Edilamar M. Oliveira

Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control ( n = 6); trained ( n = 6); control + losartan (10 mg·kg−1·day−1, n = 6); trained + losartan ( n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT1 receptor. The exercise protocol consisted of: 4 × 12 bouts, 5×/wk during 8 wk, with 65–75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and αMHC (α-myosin heavy chain)-to-βMHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT2 receptor levels, whereas the AT1 receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 ± 2.4 vs. 22.01 ± 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT1 receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Stephanie Lankhorst ◽  
Mariëtte H Kappers ◽  
Stefan Sleijfer ◽  
A H Danser ◽  
Anton H van den Meiracker

Angiogenesis inhibition with the VEGF inhibitor sunitinib is an established anti-cancer therapy, inducing hypertension and nephrotoxicity. We explored the dose- and salt-dependency of these side effects. In male WKY rats, mean arterial pressure (MAP) was monitored telemetrically during oral treatment with a high (27.5 mg/kg.day, n=14), an intermediate (14 mg/kg.day, n=6) and low dose (7 mg/kg.day, n=6) of sunitinib or vehicle (n=8) after normal salt diet for 2 weeks. The low dose-model was also combined with a high salt diet (8% NaCl and saline water). Eight days after administration rats were sacrificed and blood and 24h urine samples collected for biochemical measurements. With the high dose of sunitinib, MAP increased from 94.7±0.9 mmHg to 125.8±1.5 mmHg (Δ31.1±0.9 mmHg, p<0.001). The intermediate and low doses induced MAP rises of 24.3±2.7 mmHg (p<0.001) and 13.4±3.3 mmHg (p<0.001), respectively. The low dose of sunitinib with high salt, induced a MAP rise of 43.5±2.2 mmHg (p<0.001 compared to normal salt). With the high dose, circulating ET-1 increased from 0.6±0.1 pg/ml to 1.6±0.2 pg/ml (p<0.01) and serum cystatine-C from 4.5±0.1 mg/L to 6.6±0.3 mg/L (p<0.001). Comparable increases in circulating ET-1 were seen with the intermediate and low doses, whereas serum cystatine-C did increase with the intermediate dose (to 6.3±0.1 mg/L, p0.05). Serum cystatine-C levels with low and high salt were identical. With the high dose of sunitinib, proteinuria increased from 7.5±1.3 to 33.3±4.8 mg/day (p<0.05). The rise in proteinuria was attenuated with the intermediate (16.2±2.1 mg/day, p<0.01) and low dose (19.9±3.3 mg/day, p<0.01), but increased to 40.4±30.1 mg/day (p>0.05) with high salt. Angiogenesis inhibition-induced hypertension and nephrotoxicity are dose-dependent with a lower threshold for the rise in BP than for renal toxicity. The BP rise observed with the low dose of sunitinib observed in normotensive rats is comparable to the sunitinib-induced BP rise observed in patients and clearly is salt-sensitive. Since cystatine-C levels during normal and high salt diet were comparable, the BP rise during high salt seems independent of renal dysfunction.


2013 ◽  
Vol 305 (12) ◽  
pp. H1781-H1789 ◽  
Author(s):  
Gustavo R. Pedrino ◽  
Alfredo S. Calderon ◽  
Mary Ann Andrade ◽  
Sergio L. Cravo ◽  
Glenn M. Toney

Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg−1·min−1 sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats ( P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats ( P < 0.01). Extracellular single unit recordings in HT ( n = 28) and NT ( n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater ( P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.


2019 ◽  
Vol 316 (5) ◽  
pp. R563-R570 ◽  
Author(s):  
Mediha Becirovic-Agic ◽  
Sofia Jönsson ◽  
Maria K. Tveitarås ◽  
Trude Skogstrand ◽  
Tine V. Karlsen ◽  
...  

The genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die. Clinical symptoms of heart failure in Balb/CJ mice gave the hypothesis that ANG II + Salt impairs cardiac function and induces cardiac remodeling in male Balb/CJ but not in male C57BL/6J mice. To test this hypothesis, we measured cardiac function using echocardiography before treatment and every day for 7 days during treatment with ANG II + Salt. Interestingly, pulsed wave Doppler of pulmonary artery flow indicated increased pulmonary vascular resistance and right ventricle systolic pressure in Balb/CJ mice, already 24 h after ANG II + Salt treatment was started. In addition, Balb/CJ mice showed abnormal diastolic filling indicated by reduced early and late filling and increased isovolumic relaxation time. Furthermore, Balb/CJ exhibited lower cardiac output compared with C57BL/6J even though they retained more sodium and water, as assessed using metabolic cages. Left posterior wall thickness increased during ANG II + Salt treatment but did not differ between the strains. In conclusion, ANG II + Salt treatment causes early restriction of pulmonary flow and reduced left ventricular filling and cardiac output in Balb/CJ, which results in fluid retention and peripheral edema. This makes Balb/CJ a potential model to study the adaptive capacity of the heart for identifying new disease mechanisms and drug targets.


2005 ◽  
Vol 288 (4) ◽  
pp. F810-F815 ◽  
Author(s):  
Laura L. Howard ◽  
Matthew E. Patterson ◽  
John J. Mullins ◽  
Kenneth D. Mitchell

Transient exposure to ANG II results in the development of salt-sensitive hypertension in rats. This study was performed to determine whether a transient hypertensive episode can induce salt-sensitive hypertension in transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name TGR(Cyp1a1-Ren2)]. Systolic blood pressures were measured in conscious male Cyp1a1-Ren2 rats ( n = 6) during control conditions and during dietary administration of indole-3-carbinol (I3C; 0.15%, wt/wt), for 14 days. Systolic pressure increased from 135 ± 5 to 233 ± 7 mmHg by day 14. I3C administration was terminated and blood pressure returned to normal levels (137 ± 5 mmHg) within 10 days. Subsequently, the rats were placed on a high-salt diet (8% NaCl) for 10 days. Systolic pressure increased by 34 ± 2 mmHg throughout 10 days of the high-salt diet. Neither glomerular filtration rate nor renal plasma flow was altered in Cyp1a1-Ren2 rats with salt-sensitive hypertension. In a separate group of male Cyp1a1-Ren2 rats ( n = 6) transiently induced with 0.15% I3C for 14 days, administration of the superoxide dismutase mimetic tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl, 2 mM) attenuated the increase in systolic pressure induced by high salt. Systolic pressure increased by only 11 ± 1 mmHg throughout 8 days of a high-salt diet and tempol administration. Thus transient induction of ANG II-dependent hypertension via activation of the Cyp1a1-Ren2 transgene induces salt-sensitive hypertension in these transgenic rats. The attenuation by tempol of the high salt-induced blood pressure elevation indicates that ANG II-induced production of superoxide anion contributes to the development of salt-sensitive hypertension after transient induction of ANG II-dependent hypertension.


1999 ◽  
Vol 277 (2) ◽  
pp. F303-F311 ◽  
Author(s):  
John D. Imig ◽  
Gabriel L. Navar ◽  
Li-Xian Zou ◽  
Katie C. O’Reilly ◽  
Patricia L. Allen ◽  
...  

Kidney cortex and proximal tubular angiotensin II (ANG II) levels are greater than can be explained on the basis of circulating ANG II, suggesting intrarenal compartmentalization of these peptides. One possible site of intracellular accumulation is the endosomes. In the present study, we tested for endosomal ANG I, ANG II, angiotensin type 1A receptor (AT1A), and angiotensin converting enzyme (ACE) activity and determined whether these levels are regulated by salt intake. Male Sprague-Dawley rats were fed chow containing either high or low dietary sodium for 10–14 days. Blood and kidneys were harvested and processed for measurement of plasma, kidney, and renal intermicrovillar cleft and endosomal angiotensin levels. Kidney ANG I averaged 179 ± 20 fmol/g and ANG II averaged 258 ± 36 fmol/g in rats fed a high-sodium diet and were significantly higher, averaging 347 ± 58 fmol/g and 386 ± 55 fmol/g, respectively, in rats fed a low-salt diet. Renal intermicrovillar clefts and endosomes contained ANG I and ANG II. Intermicrovillar cleft ANG I and ANG II levels averaged 8.4 ± 2.6 and 74 ± 26 fmol/mg, respectively, in rats fed a high-salt diet and 7.6 ± 1.7 and 70 ± 25 fmol/mg in rats fed a low-salt diet. Endosomal ANG I and ANG II levels averaged 12.3 ± 4.4 and 43 ± 19 fmol/mg, respectively, in rats fed a high-salt diet, and these levels were similar to those observed in rats fed a low-salt diet. Renal endosomes from rats fed a low-salt diet demonstrated significantly more AT1A receptor binding compared with rats fed a high-salt diet. ACE activity was detectable in renal intermicrovillar clefts and was 2.5-fold higher than the levels observed in renal endosomes. Acute enalaprilat treatment decreased ACE activity in renal intermicrovillar clefts by 90% and in renal endosomes by 84%. Likewise, intermicrovillar cleft and endosomal ANG II levels decreased by 61% and 52%, respectively, in enalaprilat-treated animals. These data demonstrate the presence of intact angiotensin peptides and ACE activity in renal intermicrovillar clefts and endosomes, indicating that intact angiotensin peptides are formed and/or trafficked through intracellular endosomal compartments and are dependent on ACE activity.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Jermaine G Johnston ◽  
Bryan K Becker ◽  
Chunhua Jin ◽  
David M Pollock

The absence of diurnal oscillations in blood pressure is associated with increased cardiovascular morbidity and mortality. The clock gene Bmal1 plays important roles in diurnal cardiovascular control as mice lacking Bmal1 have lower blood pressure and lack a diurnal rhythm. Our lab has previously reported a global Bmal1 knockout rat model that lacks a night-day difference in sodium excretion. Due to the importance of endothelin signaling in sodium homeostasis and autonomic tone, we sought to characterize the hemodynamic and autonomic responses of our Bmal1 knockout (KO) rat to high salt diet and endothelin receptor blockade. Male rats homozygous for the Bmal1 mutation (KO, n = 4) and wild type (WT, n = 7) littermate controls were implanted with telemetry transmitters to record blood pressure. After a recovery period of at least one week, the rats were placed on 7 days each of normal salt (0.49% NaCl) diet, high salt (4.0% NaCl) diet, followed by high salt diet containing the specific ET B receptor antagonist A192621 (10 mg/kg/day, p.o.). Rats were placed in metabolic cages for the last three days of each diet. Surprisingly, KO rats had a similar night-day difference in mean arterial pressure (MAP) as WT during normal salt diet (6.3 ± 0.4 vs. 6.9 ± 0.9 mmHg; respectively), high salt diet (7.1 ± 0.1 vs. 5.4 ± 0.9 mmHg; respectively), and high salt + A192621 (5.4 ± 0.4 vs. 4.8 ± 1.1 mmHg; respectively). KO and WT rats had similar 24-hr MAP during normal salt diet (104.1 ± 3.3 vs. 107.3 ± 1.2 mmHg; respectively), high salt diet (113.8 ± 4.1 vs. 114.0 ± 1.4 mmHg; respectively), and high salt + A192621 (136.3 ± 8.6 vs. 133.4 ± 3.1 mmHg; respectively). Despite these similar blood pressure responses to high salt diet and ET B antagonism, KO rats had a significantly greater reduction in vasomotor sympathetic to parasympathetic tone compared to WT rats as demonstrated by low frequency to high frequency (LF/HF) analysis of diastolic blood pressure variability (-0.9 ± 0.3 vs. 0.1 ± 0.2 ΔLF/HF relative to normal salt; respectively; p = 0.01). These results indicate that lack of Bmal1 may result in greater ET B receptor mediated vasomotor sympathetic tone in rats fed a high salt diet and that factors other than Bmal1 may be influential in circadian control of blood pressure in rats.


Sign in / Sign up

Export Citation Format

Share Document