Abstract P025: Hyperinsulinemia Causes Renal Hyperperfusion And Increases Glomerular Basement Membrane Thickness Independent Of Renal Perfusion Pressure And Glycemic Status: Potential Role Of Connecting Tubule Glomerular Feedback?

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Sumit R Monu

Obesity is often associated with hyperinsulinemia (HI) and renal damage. However, the role of HI in Obesity related Renal Damage (ORD) is unclear. Renal hyperperfusion/hyperfiltration plays a major role in ORD. Normally, the kidneys autoregulate blood flow by two feedback mechanisms: 1.) Tubuloglomerular feedback (TGF), a vasoconstrictor mechanism and 2.) Connecting Tubule Glomerular Feedback (CTGF), a vasodilator mechanism. Previously, we found that Zucker obese rats had higher CTGF (TGF was unchanged) and were hyperinsulinemic before the development of ORD. Epithelial sodium channel (ENaC) initiates CTGF and Insulin is a known ENaC activator. Hypothesis: HI increases renal cortical blood flow (CBF) by increasing CTGF and causes renal damage. To isolate the effect of HI from the blood glucose (BG) level, HI-euglycemic clamp was created in normal anesthetized Sprague Dawley (SD) rats by simultaneous intravenous (IV) infusion of 10% glucose and insulin. Average baseline BG in non-fasted anesthetized SD rats was 199.0±31.6 mmol/L. Insulin infusion increased CBF significantly by 12.2 ± 1.3% (n=3, p<0.05) from the baseline even before the BG level starts decreasing. Insulin was further infused to attain normoglycemic condition (96.0±2.3 mmol/L) and this was associated with additional increase in CBF by 19.2 ± 4.5% (p<0.05) from the baseline. Subsequent ENaC inhibition by benzamil (BZ) (400 μg/kg, IV) completely reversed the insulin-induced increase in CBF. Neither Insulin nor BZ treatment altered the renal perfusion pressure (RPP) suggesting insulin-induced increase in CBF was independent of RPP. In a separate group of SD rats, renal-HI (1.8 IU/kg/day) was created in only one of the two kidneys for 6 weeks using renal subcapsular catheter to measure glomerular basement membrane (GBM) thickness (a marker of renal damage). GBM was significantly thickened in insulin-infused kidney compared to vehicle-infused kidney (199.4±17 vs. 145.5±3.6nm, n=3, p<0.05). Conclusion: Acute HI increased CBF, that was completely reversed by ENaC inhibition implying a possible role of enhanced CTGF. Chronic renal-HI caused GBM thickening. Perspective: HI observed in obesity or type-2 diabetes may cause renal hyperperfusion by increasing CTGF and contribute to the ORD.

1999 ◽  
Vol 276 (3) ◽  
pp. R855-R863 ◽  
Author(s):  
Richard P. E. van Dokkum ◽  
Cheng-Wen Sun ◽  
Abraham P. Provoost ◽  
Howard J. Jacob ◽  
Richard J. Roman

The present study examined whether an abnormality in the myogenic response of renal arterioles that impairs autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) contributes to the development of renal damage in fawn-hooded hypertensive (FHH) rats. Autoregulation of whole kidney, cortical, and medullary blood flow and PGC were compared in young (12 wk old) FHH and fawn-hooded low blood pressure (FHL) rats in volume-replete and volume-expanded conditions. Baseline RBF, cortical and medullary blood flow, and PGCwere significantly greater in FHH than in FHL rats. Autoregulation of renal and cortical blood flow was significantly impaired in FHH rats compared with results obtained in FHL rats. Myogenically mediated autoregulation of PGC was significantly greater in FHL than in FHH rats. PGC rose from 46 ± 1 to 71 ± 2 mmHg in response to an increase in renal perfusion pressure from 100 to 150 mmHg in FHH rats, whereas it only increased from 39 ± 2 to 53 ± 1 mmHg in FHL rats. Isolated perfused renal interlobular arteries from FHL rats constricted by 10% in response to elevations in transmural pressure from 70 to 120 mmHg. In contrast, the diameter of vessels from FHH rats increased by 15%. These results indicate that the myogenic response of small renal arteries is altered in FHH rats, and this contributes to an impaired autoregulation of renal blood flow and elevations in PGC in this strain.


1994 ◽  
Vol 266 (2) ◽  
pp. F275-F282 ◽  
Author(s):  
A. P. Zou ◽  
J. D. Imig ◽  
M. Kaldunski ◽  
P. R. Ortiz de Montellano ◽  
Z. Sui ◽  
...  

The present study evaluated the role of endogenous P-450 metabolites of arachidonic acid (AA) on autoregulation of renal blood flow in rats. Whole kidney and cortical blood flows were well autoregulated when renal perfusion pressure was varied from 150 to 100 mmHg. Infusion of 17-octadecynoic acid (17-ODYA) into the renal artery (33 nmol/min) increased cortical and papillary blood flows by 12.6 +/- 2.5 and 26.5 +/- 4.6%, respectively. After 17-ODYA, autoregulation of whole kidney and cortical blood flows was impaired. Intrarenal infusion of miconazole (8 nmol/min) had no effect on autoregulation of whole kidney, cortical, or papillary blood flows. 17-ODYA (1 microM) inhibited the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) and 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) by renal preglomerular microvessels in vitro by 83.7 +/- 7.4% and 89.0 +/- 4.9%, respectively. Miconazole (1 microM) reduced the formation of EETs by 86.4 +/- 5.7%, but it had no effect on the production of 20-HETE. These results suggest that endogenous P-450 metabolites of AA, particularly 20-HETE, may participate in the autoregulation of renal blood flow.


1994 ◽  
Vol 267 (1) ◽  
pp. R253-R259 ◽  
Author(s):  
D. M. Strick ◽  
M. J. Fiksen-Olsen ◽  
J. C. Lockhart ◽  
R. J. Roman ◽  
J. C. Romero

We studied the responses of total renal blood flow (RBF) and renal medullary blood flow (RMBF) to changes in renal perfusion pressure (RPP) within and below the range of renal autoregulation in the anesthetized dog (n = 7). To measure RMBF, we developed a technique in which the medulla is exposed by excising a section of infarcted cortex and a multiple optical fiber flow probe, connected to a laser-Doppler flowmeter, is placed on the medulla. At the baseline RPP of 120 +/- 1 mmHg, RBF was 2.58 +/- 0.33 ml.min-1.g perfused kidney wt-1, and RMBF was 222 +/- 45 perfusion units. RPP was then decreased in consecutive 20-mmHg steps to 39 +/- 1 mmHg. At 80 +/- 1 mmHg, RBF remained at 89 +/- 4% of the baseline value; however, RMBF had decreased significantly (P < 0.05) to 73 +/- 4% of its baseline value. The efficiency of autoregulation of RBF and of RMBF within the RPP range of 120 to 80 mmHg was determined by calculating an autoregulatory index (AI) for each parameter using the formula AI = (%delta blood flow)/(%delta RPP). An AI of 0 indicates perfect autoregulation, and an index of 1 indicates a system with a fixed resistance. The AI for RBF averaged 0.33 +/- 0.12 over this pressure range and showed a significantly greater (P < 0.05) autoregulatory ability than did the RMBF (0.82 +/- 0.13). Decreasing perfusion pressure < 80 mmHg produced significant decreases in both RBF and RMBF.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 247 (3) ◽  
pp. R546-R551 ◽  
Author(s):  
D. Villarreal ◽  
J. O. Davis ◽  
R. H. Freeman ◽  
W. D. Sweet ◽  
J. R. Dietz

This study examines the role of the renal prostaglandin system in stimulus-secretion coupling for renal baroreceptor-dependent renin release in the anesthetized rat. Changes in plasma renin activity (PRA) secondary to suprarenal aortic constriction were evaluated in groups of rats with a single denervated nonfiltering kidney (DNFK) with and without pretreatment with meclofenamate. Suprarenal aortic constriction was adjusted to reduce renal perfusion pressure to either 100 or 50 mmHg. In addition, similar experiments were performed in rats with a single intact filtering kidney. Inhibition of prostaglandin synthesis with meclofenamate failed to block or attenuate the increase in PRA in response to the decrement in renal perfusion pressure after both severe and mild aortic constriction for both the DNFK and the intact-kidney groups. The adequacy of prostaglandin inhibition was demonstrated by complete blockade with meclofenamate of the marked hypotensive and hyperreninemic responses to sodium arachidonate. The results in the DNFK indicate that in the rat, renal prostaglandins do not function as obligatory mediators of the isolated renal baroreceptor mechanism for the control of renin release. Also the findings in the intact filtering kidney suggest that prostaglandins are not essential in the renin response of other intrarenal receptor mechanisms that also are stimulated by a reduction in renal perfusion pressure.


1992 ◽  
Vol 2 (9) ◽  
pp. 1371-1387 ◽  
Author(s):  
J C Romero ◽  
V Lahera ◽  
M G Salom ◽  
M L Biondi

The role of nitric oxide in renal function has been assessed with pharmacologic and physiologic interventions. Pharmacologically, the renal vasodilation and, to some extent, the natriuresis produced by endothelium-dependent vasodilators such as acetylcholine and bradykinin are mediated by nitric oxide and also by prostaglandins. However, prostaglandins and nitric oxide do not participate in the renal effects produced by endothelium-independent vasodilators such as atrial natriuretic peptide, prostaglandin I2, and nitroprusside. Physiologically, nitric oxide and prostaglandins exert a strong regulation on the effects produced by changes in renal perfusion pressure. Increments in renal perfusion pressure within the range of RBF autoregulation appear to inhibit prostaglandin synthesis while simultaneously enhancing the formation of nitric oxide. Nitric oxide modulates autoregulatory vasoconstriction and at the same time inhibits renin release. Conversely, a decrease of renal perfusion pressure to the limit of or below RBF autoregulation may inhibit the synthesis of nitric oxide but may trigger the release of prostaglandins, whose vasodilator action ameliorates the fall in RBF and stimulates renin release. Nitric oxide and prostaglandins are also largely responsible for mediating pressure-induced natriuresis. However, unlike prostaglandins, mild impairment of the synthesis of nitric oxide in systemic circulation produces a sustained decrease in sodium excretion, which renders blood pressure susceptible to be increased during high-sodium intake. This effect suggests that a deficiency in the synthesis of nitric oxide could constitute the most effective single disturbance to foster the development of a syndrome similar to that seen in salt-sensitive hypertension.


1977 ◽  
Vol 232 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
E. H. Prosnitz ◽  
E. J. Zambraski ◽  
G. F. DiBona

Bilateral carotid artery occlusion results in an increase in mean arterial pressure, an increase in renal sympathetic nerve activity, and a redistribution of renal blood flow from inner to outer cortex. To elucidate the mechanism of the renal blood flow redistribution, carotid artery occlusion was performed in anesthetized dogs with the left kidney either having renal perfusion pressure maintained constant (aortic constriction) or having alpha-adrenergic receptor blockade (phenoxybenzamine); the right kidney of the same dog served to document the normal response. When renal perfusion pressure was maintained constant, renal blood flow distribution (microspheres) was unchanged by carotid artery occlusion. In the presence of renal alpha-adrenergic receptor blockade, carotid artery occlusion elicited the usual redistribution of renal blood flow from inner to outer cortex. The redistribution of renal blood flow observed after carotid artery occlusion is mediated by the increase in renal perfusion pressure rather than the increase in renal sympathetic nerve activity.


1989 ◽  
Vol 256 (1) ◽  
pp. F63-F70 ◽  
Author(s):  
J. Garcia-Estan ◽  
R. J. Roman

The present study examines the role of renal interstitial hydrostatic pressure (RIHP) in the pressure-diuretic and -natriuretic response. The relationships between RIHP, sodium excretion, and renal perfusion pressure (RPP) were determined in antidiuretic and volume-expanded (VE) rats with an intact or decapsulated kidney. RIHP was measured by use of the implanted capsule technique. RIHP increased significantly from 7.5 +/- 0.8 to 12.0 +/- 1.4 mmHg in VE animals and from 3.3 +/- 0.4 to 5.2 +/- 0.7 mmHg in antidiuretic rats after RPP was varied from 100 to 150 mmHg. The pressure-natriuretic response of the antidiuretic rats was blunted compared with that observed in the VE rats. Decapsulation of the kidney in VE rats lowered RIHP and reduced, but did not eliminate, the pressure-natriuretic response. To determine whether this residual response was related to changes in interstitial pressure in the medulla, cortical (CIHP) and medullary interstitial hydrostatic pressures (MIHP) were simultaneously measured in VE rats with an intact or decapsulated kidney. In control rats CIHP and MIHP were similar at all levels of RPP studied. In rats with the renal capsule removed MIHP was higher than CIHP and rose significantly from 6.7 +/- 0.8 to 9.2 +/- 0.8 mmHg when RPP was varied from 100 to 150 mmHg. These results indicate that pressure diuresis and natriuresis is accompanied by changes in RIHP and the response is modulated by the basal level of RIHP. These findings suggest that changes in MIHP may serve as an intrarenal signal for this response.


1976 ◽  
Vol 51 (s3) ◽  
pp. 85s-87s
Author(s):  
A. Stella ◽  
F. Calaresu ◽  
A. Zanchetti

1. Renin release from an intact, innervated kidney and from the contralateral denervated kidney was measured before and during a period of suprarenal aortic stenosis. 2. Aortic stenosis of 10 min duration reduced renal perfusion pressure to 50 mmHg and increased renin release from both kidneys, but the response from the innervated kidney was greater. 3. A study of the time-course of the response during 30 min of aortic stenosis showed that the difference in rate of renin release between the innervated and the denervated kidney is greatest during the first few minutes of aortic stenosis.


Sign in / Sign up

Export Citation Format

Share Document