Abstract 706: Changes in Translational Efficacy During Zebrafish Heart Regeneration

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Joseph A Goldman ◽  
Ariel Bazzini ◽  
Antonio Giraldez ◽  
Kenneth Poss
2019 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
Suneeta Narumanchi ◽  
Karri Kalervo ◽  
Sanni Perttunen ◽  
Hong Wang ◽  
Katariina Immonen ◽  
...  

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.


Nature ◽  
2013 ◽  
Vol 498 (7455) ◽  
pp. 497-501 ◽  
Author(s):  
Ruilin Zhang ◽  
Peidong Han ◽  
Hongbo Yang ◽  
Kunfu Ouyang ◽  
Derek Lee ◽  
...  

2015 ◽  
Vol 309 (8) ◽  
pp. H1237-H1250 ◽  
Author(s):  
Marina Leone ◽  
Ajit Magadum ◽  
Felix B. Engel

The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.


Cell ◽  
2006 ◽  
Vol 127 (3) ◽  
pp. 607-619 ◽  
Author(s):  
Alexandra Lepilina ◽  
Ashley N. Coon ◽  
Kazu Kikuchi ◽  
Jennifer E. Holdway ◽  
Richard W. Roberts ◽  
...  

2018 ◽  
Author(s):  
Finn Bruton ◽  
Aryan Baghbadrani ◽  
Charlotte Buckley ◽  
Carl Tucker ◽  
Martin Denvir ◽  
...  

Biomolecules ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Hagen Klett ◽  
Lonny Jürgensen ◽  
Patrick Most ◽  
Martin Busch ◽  
Fabian Günther ◽  
...  

Heart diseases are the leading cause of death for the vast majority of people around the world, which is often due to the limited capability of human cardiac regeneration. In contrast, zebrafish have the capacity to fully regenerate their hearts after cardiac injury. Understanding and activating these mechanisms would improve health in patients suffering from long-term consequences of ischemia. Therefore, we monitored the dynamic transcriptome response of both mRNA and microRNA in zebrafish at 1–160 days post cryoinjury (dpi). Using a control model of sham-operated and healthy fish, we extracted the regeneration specific response and further delineated the spatio-temporal organization of regeneration processes such as cell cycle and heart function. In addition, we identified novel (miR-148/152, miR-218b and miR-19) and previously known microRNAs among the top regulators of heart regeneration by using theoretically predicted target sites and correlation of expression profiles from both mRNA and microRNA. In a cross-species effort, we validated our findings in the dynamic process of rat myoblasts differentiating into cardiomyocytes-like cells (H9c2 cell line). Concluding, we elucidated different phases of transcriptomic responses during zebrafish heart regeneration. Furthermore, microRNAs showed to be important regulators in cardiomyocyte proliferation over time.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Shengfan Ye ◽  
Ting Zhao ◽  
Wei Zhang ◽  
Zimu Tang ◽  
Ce Gao ◽  
...  

Abstract Neonatal mice and adult zebrafish can fully regenerate their hearts through proliferation of pre-existing cardiomyocytes. Previous studies have revealed that p53 signalling is activated during cardiac regeneration in neonatal mice and that hydrogen peroxide (H2O2) generated near the wound site acts as a novel signal to promote zebrafish heart regeneration. We recently demonstrated that the expression of the p53 isoform Δ133p53 is highly induced upon stimulation by low-level reactive oxygen species (ROS) and that Δ133p53 coordinates with full-length p53 to promote cell survival by enhancing the expression of antioxidant genes. However, the function of p53 signalling in heart regeneration remains uncharacterised. Here, we found that the expression of Δ113p53 is activated in cardiomyocytes at the resection site in the zebrafish heart in a full-length p53- and ROS signalling-dependent manner. Cell lineage tracing showed that Δ113p53-positive cardiomyocytes undergo cell proliferation and contribute to myocardial regeneration. More importantly, heart regeneration is impaired in Δ113p53M/M mutant zebrafish. Depletion of Δ113p53 significantly decreases the proliferation frequency of cardiomyocytes but has little effect on the activation of gata4-positive cells, their migration to the edge of the wound site, or apoptotic activity. Live imaging of intact hearts showed that induction of H2O2 at the resection site is significantly higher in Δ113p53M/M mutants than in wild-type zebrafish, which may be the result of reduced induction of antioxidant genes in Δ113p53M/M mutants. Our findings demonstrate that induction of Δ113p53 in cardiomyocytes at the resection site functions to promote heart regeneration by increasing the expression of antioxidant genes to maintain redox homeostasis.


Author(s):  
Yabo Fang ◽  
Kaa Seng Lai ◽  
Peilu She ◽  
Jianjian Sun ◽  
Wufan Tao ◽  
...  

Nature ◽  
2010 ◽  
Vol 464 (7288) ◽  
pp. 606-609 ◽  
Author(s):  
Chris Jopling ◽  
Eduard Sleep ◽  
Marina Raya ◽  
Mercè Martí ◽  
Angel Raya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document