Abstract 859: Sepsis-Induced Cardiomyopathy is Caused by Mitochondrial Dysfunction Due to Protein Kinase C (PKC) Delta Activation

2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
John P Morrow ◽  
Leroy C Joseph ◽  
Michael V Reyes ◽  
Konstaninos Drosatos
1994 ◽  
Vol 14 (12) ◽  
pp. 8018-8027
Author(s):  
J Xu ◽  
S Rockow ◽  
S Kim ◽  
W Xiong ◽  
W Li

Interferons (IFNs) exert antiproliferative effects on many types of cells. The underlying molecular mechanism, however, is unclear. One possibility is that IFNs block growth factor-induced mitogenic signaling, which involves activation of Ras/Raf-1/MEK/mitogen-activated protein kinase. We have tested this hypothesis by using HER14 cells (NIH 3T3 cell expressing both platelet-derived growth factor [PDGF] and epidermal growth factor [EGF] receptors) as a model system. Our studies showed that IFNs (alpha/beta and gamma) blocked PDGF-and phorbol ester- but not EGF-stimulated DNA synthesis and cell proliferation. While the ligand-stimulated receptor tyrosine phosphorylation and interaction with downstream signaling molecules, such as GRB2, were not affected, IFNs specifically blocked PDGF- and phorbol ester- but not EGF-stimulated activation of Raf-1, mitogen-activated protein kinases, and tyrosine phosphorylation of an unidentified 34-kDa protein. This inhibition could be detected as early as 5 min after IFN treatments and was insensitive to cycloheximide, indicating that de novo protein synthesis is not required. The IFN-induced inhibition acted upstream of Raf-1 kinase and downstream of diacyl glycerol/phorbol ester, suggesting that protein kinase C (PKC) is the potential primary target. Consistently, downregulation of PKC by chronic phorbol myristate acetate treatment or inhibition of PKC by H7 and staurosporine blocked PDGF- and phorbol myristate acetate- but not EGF-induced signaling and DNA synthesis. Moreover, incubating cells with antisense oligodeoxyribonucleotides of PKC delta eliminated production of PKC delta protein and specifically blocked PDGF- but not EGF-stimulated mitogenesis in these cells. Thus, these studies have elucidated a major difference in the early events of EGF-and PDGF-stimulated signal transduction and, more importantly, revealed a novel mechanism by which IFNs may execute their antiproliferative function.


1997 ◽  
Vol 272 (5) ◽  
pp. H2485-H2491 ◽  
Author(s):  
V. Rybin ◽  
S. F. Steinberg

Although calcium-insensitive protein kinase C (PKC) isoforms (PKC-epsilon and PKC-delta) are consistently detected in adult ventricular myocytes, the evidence that adult ventricular myocytes also express calcium-sensitive PKC-alpha is inconsistent. The current study used four different anti-PKC-alpha-antibodies to resolve some of the uncertainties regarding the immunodetection of PKC-alpha in adult ventricular myocytes. Three of the antibodies used in this study barely (GIBCO-BRL) or rather faintly (Transduction Laboratories and Seikagaku America) recognize PKC-alpha in crude preparations from adult ventricular myocytes. Although each of these antibodies recognizes a prominent 80-kDa band, which is similar in size to PKC-alpha, this represents nonspecific immunoreactivity and should not be confused with PKC-alpha. This conclusion is based on peptide-blocking experiments (GIBCO-BRL), the absence of the requisite sensitivity to calcium- and phorbol 12-myristate 13-acetate-induced translocation (Seikagaku America and Transduction Laboratories), and/or the failure to copurify with PKC-alpha on DEAE-Sephacel chromatography. Nevertheless, an antibody from Upstate Biotechnology clearly recognizes PKC-alpha and not other unrelated nonspecific immunoreactive species in crude preparations from adult ventricular myocytes. Each of the antisera used in this study could detect PKC-alpha immunoreactivity following chromatographic purification of the samples to enrich for PKC-alpha and remove nonspecific immunoreactive proteins. These results suggest that PKC-alpha is expressed by adult ventricular myocytes and argue that differences in the sensitivity and/or specificity of available antisera contribute to at least some of the confusion regarding PKC-alpha expression in adult ventricular myocytes.


2018 ◽  
Vol 94 (2) ◽  
pp. 280-291 ◽  
Author(s):  
Nino Kvirkvelia ◽  
Malgorzata McMenamin ◽  
Marie Warren ◽  
Ravirajsinh N. Jadeja ◽  
Sai Karthik Kodeboyina ◽  
...  

1994 ◽  
Vol 14 (10) ◽  
pp. 6727-6735 ◽  
Author(s):  
W Li ◽  
J C Yu ◽  
P Michieli ◽  
J F Beeler ◽  
N Ellmore ◽  
...  

The murine myeloid progenitor cell line 32D was recently shown to undergo monocytic differentiation when protein kinase C-delta (PKC-delta) was overexpressed and activated by 12-O-tetradecanoylphorbol-13-acetate (TPA) (H. Mischak, J.H. Pierce, J. Goodnight, M.G. Kazanietz, P.M. Blumberg, and J.F. Mushinski, J. Biol. Chem. 268:20110-20115, 1993). Tyrosine phosphorylation of PKC-delta occurred when PKC-delta-transfected 32D cells were stimulated by TPA (W. Li, H. Mischak, J.-C. Yu, L.-M. Wang, J.F. Mushinski, M.A. Heidaran, and J.H. Pierce, J. Biol. Chem. 269:2349-2352, 1994). In order to elucidate the role played by PKC-delta in response to activation of a receptor tyrosine kinase, we transfected platelet-derived growth factor beta receptor (PDGF-beta R) alone (32D/PDGF-beta R) or together with PKC-delta (32D/PDGF-beta R/PKC-delta) into 32D cells. NIH 3T3 cells which endogenously express both PDGF-alpha R and PDGF-beta R were also transfected with PKC-delta (NIH 3T3/PKC-delta). Like TPA treatment, PDGF-BB stimulation caused striking phosphorylation of PKC-delta in vivo and translocation of some PKC-delta from the cytosol fraction to the membrane fraction in both cell systems. Some of the phosphorylation induced by PDGF-BB treatment was found to be on a tyrosine residue(s). Tyrosine-phosphorylated PKC-delta was observed only for the membrane fraction after stimulation with PDGF-BB or TPA. The enzymatic activity of PKC-delta in the membrane fraction also increased after stimulation with TPA or PDGF, providing a positive correlation between PKC-delta tyrosine phosphorylation and its activation. Overnight treatment of 32D/PDGF-beta R/PKC-delta cells with PDGF-BB induced monocytic differentiation as judged by an increase in expression of cell surface macrophage differentiation markers. PDGF-BB had much weaker effects on 32D/PDGF-beta R cell differentiation, suggesting that increased PKC-delta expression enhanced monocytic differentiation. These results indicate that PKC-delta is a downstream molecule in the PDGFR signaling pathway and may play a pivotal role in PDGF-beta R-mediated cell differentiation.


1995 ◽  
Vol 269 (3) ◽  
pp. H1087-H1097 ◽  
Author(s):  
A. Clerk ◽  
M. A. Bogoyevitch ◽  
S. J. Fuller ◽  
A. Lazou ◽  
P. J. Parker ◽  
...  

The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.


Sign in / Sign up

Export Citation Format

Share Document