Expression of protein kinase C isoforms during cardiac ventricular development

1995 ◽  
Vol 269 (3) ◽  
pp. H1087-H1097 ◽  
Author(s):  
A. Clerk ◽  
M. A. Bogoyevitch ◽  
S. J. Fuller ◽  
A. Lazou ◽  
P. J. Parker ◽  
...  

The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.

1997 ◽  
Vol 272 (5) ◽  
pp. H2485-H2491 ◽  
Author(s):  
V. Rybin ◽  
S. F. Steinberg

Although calcium-insensitive protein kinase C (PKC) isoforms (PKC-epsilon and PKC-delta) are consistently detected in adult ventricular myocytes, the evidence that adult ventricular myocytes also express calcium-sensitive PKC-alpha is inconsistent. The current study used four different anti-PKC-alpha-antibodies to resolve some of the uncertainties regarding the immunodetection of PKC-alpha in adult ventricular myocytes. Three of the antibodies used in this study barely (GIBCO-BRL) or rather faintly (Transduction Laboratories and Seikagaku America) recognize PKC-alpha in crude preparations from adult ventricular myocytes. Although each of these antibodies recognizes a prominent 80-kDa band, which is similar in size to PKC-alpha, this represents nonspecific immunoreactivity and should not be confused with PKC-alpha. This conclusion is based on peptide-blocking experiments (GIBCO-BRL), the absence of the requisite sensitivity to calcium- and phorbol 12-myristate 13-acetate-induced translocation (Seikagaku America and Transduction Laboratories), and/or the failure to copurify with PKC-alpha on DEAE-Sephacel chromatography. Nevertheless, an antibody from Upstate Biotechnology clearly recognizes PKC-alpha and not other unrelated nonspecific immunoreactive species in crude preparations from adult ventricular myocytes. Each of the antisera used in this study could detect PKC-alpha immunoreactivity following chromatographic purification of the samples to enrich for PKC-alpha and remove nonspecific immunoreactive proteins. These results suggest that PKC-alpha is expressed by adult ventricular myocytes and argue that differences in the sensitivity and/or specificity of available antisera contribute to at least some of the confusion regarding PKC-alpha expression in adult ventricular myocytes.


1994 ◽  
Vol 300 (3) ◽  
pp. 751-756 ◽  
Author(s):  
Z Kiss ◽  
W H Anderson

It is well established that activators of protein kinase C (PKC) also enhance the activity of phospholipase D (PLD), and that this regulatory mechanism is altered in transformed cells. Here we used the C3H/10T1/2 mouse embryo fibroblast line, a cellular model for the study of carcinogenesis, to examine possible effects of carcinogens on the PKC isoenzyme pattern and on the regulation of PLD by the PKC activators phorbol 12-myristate 13-acetate (PMA) and platelet-derived growth factor (PDGF). Treatment of these fibroblasts with 0.5 microgram/ml 7,12-dimethyl-benz[a]anthracene or benzo[a]pyrene for 24 h greatly decreased (> 80%) the amount of immunoreactive PKC-epsilon. Of the remaining three isoenzymes identified, carcinogens alone had no effect on the cellular status of PKC-alpha and PKC-delta, although they appeared to promote slightly PMA-induced membrane translocation of the cytosolic forms of these isoenzymes in exponentially growing cells. Carcinogens and/or PMA had no effects on the cellular content or distribution of PKC-zeta. Chronic (24 h) treatments with carcinogens resulted in increased or decreased release of [14C]ethanolamine or [14C]choline from the appropriate prelabelled phospholipids, respectively. However, carcinogens failed to block the stimulatory effects of PMA and PDGF on the hydrolysis of phosphatidylethanolamine and phosphatidylcholine or on the synthesis of phosphatidylethanol mediated by PLD. These data indicate that in fibroblasts PKC-epsilon is not a major regulator of PLD activity.


1992 ◽  
Vol 117 (1) ◽  
pp. 121-133 ◽  
Author(s):  
WC Wetsel ◽  
WA Khan ◽  
I Merchenthaler ◽  
H Rivera ◽  
AE Halpern ◽  
...  

Polyclonal isoenzyme-specific antisera were developed against four calcium-independent protein kinase C (PKC) isoenzymes (delta, epsilon, epsilon', and zeta) as well as the calcium-dependent isoforms (alpha, beta I, beta II, and gamma). These antisera showed high specificities, high titers, and high binding affinities (3-370 nM) for the peptide antigens to which they were raised. Each antiserum detected a species of the predicted molecular weight by Western blot that could be blocked with the immunizing peptide. PKC was sequentially purified from rat brain, and the calcium-dependent forms were finally resolved by hydroxyapatite chromatography. Peak I reacted exclusively with antisera to PKC gamma, peak II with PKC beta I and -beta II, and peak III with PKC alpha. These same fractions, however, were devoid of immunoreactivity for the calcium-independent isoenzymes. The PKC isoenzymes demonstrated a distinctive tissue distribution when evaluated by Western blot and immunocytochemistry. PCK delta was present in brain, heart, spleen, lung, liver, ovary, pancreas, and adrenal tissues. PKC epsilon was present in brain, kidney, and pancreas, whereas PKC epsilon' was present predominantly in brain. PKC zeta was present in most tissues, particularly the lung, brain, and liver. Both PKC delta and PKC zeta showed some heterogeneity of size among the different tissues. PKC alpha was present in all organs and tissues examined. PKC beta I and -beta II were present in greatest amount in brain and spleen. Although the brain contained the most PKC gamma immunoreactivity, some immunostaining was also seen in adrenal tissue. These studies provide the first evidence of selective organ and tissue distributions of the calcium-independent PKC isoenzymes.


1994 ◽  
Vol 304 (3) ◽  
pp. 1001-1008 ◽  
Author(s):  
C Limatola ◽  
D Schaap ◽  
W H Moolenaar ◽  
W J van Blitterswijk

Phosphatidic acid (PA) is produced rapidly in agonist-stimulated cells, but the physiological function of this PA is unknown. We have examined the effects of PA on distinct isoforms of protein kinase C (PKC) using a new cell-free assay system. Addition of PA to cytosol from COS cells overexpressing PKC-alpha, -epsilon or -zeta differentially-activated all three isotypes, as shown by PKC autophosphorylation, and prominent phosphorylation of multiple endogenous substrates. In the absence of Ca2+, the diacylglycerol-insensitive zeta-isotype of PKC was most strongly activated by both PA and bisPA, a newly identified product of activated phospholipase D, with each lipid inducing its own profile of protein phosphorylation. BisPA was also a strong activator of PKC-epsilon, but a weak activator of PKC-alpha. Ca2+, at > or = 0.1 microM, inhibited PA and bisPA activation of PKC-zeta, but did not affect PKC-epsilon activation. In contrast, PKC-alpha was strongly activated by PA only in the presence of Ca2+. BisPA-induced phosphorylations mediated by PKC-zeta could be mimicked in part by other acidic phospholipids and unsaturated fatty acids. PA activation of PKC-zeta was unique in that PA not only stimulated PKC-zeta-mediated phosphorylation of distinctive substrates, but also caused an upward shift in electrophoretic mobility of PKC-zeta, which was not observed with other acidic lipids or with PKC-alpha or -epsilon. We have presented evidence that this mobility shift is not caused by PKC-zeta autophosphorylation, but it coincides with physical binding of PA to PKC-zeta. These results suggest that in cells stimulated under conditions where intracellular Ca2+ is at (or has returned to) basal level, PA may be a physiological activator of PKC-zeta.


1994 ◽  
Vol 297 (2) ◽  
pp. 407-413 ◽  
Author(s):  
N A Turner ◽  
M G Rumsby ◽  
J H Walker ◽  
F A McMorris ◽  
S G Ball ◽  
...  

Protein kinase C (PKC) consists of a family of closely related subtypes which differ in their localization and activation properties. Our previous studies have suggested a role for PKC in the regulation of noradrenaline (NA) release from the human neuroblastoma SH-SY5Y. Here we have used two approaches to characterize the PKC subtypes present in SH-SY5Y cells. Firstly, the PCR was used to show that SH-SY5Y cells contain mRNA encoding PKC subtypes alpha, beta, gamma, delta, epsilon and zeta. Secondly, immunoblotting showed that SH-SY5Y cells express PKC subtypes alpha, epsilon and zeta at the protein level. Prolonged (48 h) exposure of cells to the phorbol ester phorbol 12-myristate 13-acetate (PMA; 100 nM) resulted in a marked decrease in the amounts of PKC-alpha and PKC-epsilon, with no change in levels of PKC-zeta. Prolonged PMA treatment had no significant effect on K(+)-evoked NA release from SH-SY5Y cells, whereas carbachol-evoked release was increased 2.2-fold. However, prolonged exposure to PMA completely inhibited the ability of acute (12 min) PMA treatment to enhance both K(+)- and carbachol-evoked NA release. The specific PKC inhibitor RO 31-7459 (10 microM) was found to inhibit K(+)- and carbachol-evoked release by 27% and 68% respectively. RO 31-7549 also completely inhibited the ability of acute PMA treatment to enhance release. These data suggest that PKC-alpha and/or PKC-epsilon play an essential role in the regulation of PMA-enhanced K(+)- and carbachol-evoked NA release in SH-SY5Y cells.


1992 ◽  
Vol 283 (3) ◽  
pp. 781-787 ◽  
Author(s):  
M Liyanage ◽  
D Frith ◽  
E Livneh ◽  
S Stabel

Of the recently identified protein kinase C (PKC) types of group B (delta, epsilon, zeta, eta, PKC-L), only PKC-epsilon has been characterized in great detail. In order to compare the regulatory and catalytic properties of these new kinases, we have expressed PKC-delta, -epsilon, -zeta and PKC-L as recombinant proteins from their cDNAs in insect cells via baculovirus vectors and in mammalian COS-1 cells. After expression in insect cells, phorbol ester binding and kinase activities of the group B enzymes were compared with the respective activities of a member of group A, PKC-gamma. Although PKC-delta and PKC-L(eta) bind phorbol ester to a similar or the same extent as PKC-gamma, they show a distinctively different behaviour towards conventional PKC substrates such as histone, myelin basic protein, protamine and protamine sulphate, suggesting either that phorbol esters are not able to fully activate these enzymes or that their substrate specificities are very different from those of the group A enzymes. PKC-zeta, a polypeptide of 80 kDa, does not bind phorbol ester and does not phosphorylate these substrates to a significant extent. Consistent with their ability to bind phorbol ester, recombinant PKC-delta and PKC-epsilon are down-regulated in COS cells by prolonged treatment with phorbol ester, whereas PKC-zeta protein levels remain unaltered.


1993 ◽  
Vol 295 (3) ◽  
pp. 767-772 ◽  
Author(s):  
M Ohmichi ◽  
G Zhu ◽  
A R Saltiel

Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta and -zeta. Both histone phosphorylation and autophosphorylation of PKC-epsilon were increased by treatment of PC-12 cells with NGF. This increased phosphorylation observed in vitro is rapid, occurring maximally at 2.5 min and declining thereafter. Moreover, this effect of NGF is dose-dependent over physiological concentrations of the growth factor. Although the mechanistic basis for this specificity in PKC activation is not clear, NGF acutely stimulated the production of diacylglycerol without causing corresponding changes in intracellular Ca2+ concentrations. These results suggest that NGF may selectively stimulate the Ca(2+)-insensitive epsilon isoform of PKC by a phosphatidylinositol-independent mechanism.


1996 ◽  
Vol 271 (2) ◽  
pp. C589-C594 ◽  
Author(s):  
A. Horowitz ◽  
O. Clement-Chomienne ◽  
M. P. Walsh ◽  
K. G. Morgan

We provide here the first direct evidence for in situ functional specificity of protein kinase C (PKC)-epsilon as a regulator of smooth muscle contractility. PKC is known to cause a Ca(2+)-independent contraction of ferret aortic smooth muscle, and the expression of two Ca(2+)-independent PKC isoenzymes, epsilon and zeta, has been demonstrated in this tissue. To test directly the hypothesis that one of these isoenzymes regulates contractility, constitutively active forms of PKC-epsilon and PKC-zeta were applied to saponin-permeabilized single ferret aortic smooth muscle cells. PKC-zeta caused no significant force response, but PKC-epsilon induced contraction of a magnitude (105 +/- 8 micrograms) similar to that produced by phenylephrine (110 +/- 10 micrograms), a relatively selective alpha 1-adrenergic agonist that triggers a PKC-dependent contraction. The PKC-epsilon-induced contraction was reversed by the PKC pseudosubstrate inhibitory peptide, PKC19-31. The myosin light chain kinase inhibitor 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) did not affect the force response of PKC-epsilon-activated cells, suggesting that PKC-epsilon may induce this contraction solely via thin filament disinhibition. In support of this conclusion, calponin and caldesmon were shown to be good in vitro substrates of PKC-epsilon but not of PKC-zeta.


1995 ◽  
Vol 310 (3) ◽  
pp. 975-982 ◽  
Author(s):  
S Spence ◽  
G Rena ◽  
G Sweeney ◽  
M D Houslay

The cAMP phosphodiesterase (PDE) activity of CHO cells was unaffected by the addition of Ca2+ +calmodulin (CaM), indicating the absence of any PDE1 (Ca2+/CaM-stimulated PDE) activity. Treatment with the tumour promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) led to the rapid transient induction of PDE1 activity which attained a maximum value after about 13 h before slowly decreasing. Such induction was attenuated by actinomycin D. PCR primers were designed to hybridize with two regions identified as being characteristic of PDE1 forms found in various species and predicted to amplify a 601 bp fragment. RT-PCR using degenerate primers allowed an approx. 600 bp fragment to be amplified from RNA preparations of rat brain but not from CHO cells unless they had been treated with PMA. CHO cells transfected to overexpress protein kinase C (PKC)-alpha and PKC-epsilon, but not those transfected to overexpress PKC-beta I or PKC-gamma, exhibited a twofold higher PDE activity. They also expressed a PDE1 activity, with Ca2+/CaM effecting a 1.8-2.8-fold increase in total PDE activity. RT-PCR, with PDE1-specific primers, identified an approx. 600 bp product in CHO cells transfected to overexpress PKC-alpha and PKC-epsilon, but not in those overexpressing PKC-beta I or PKC-gamma. Treatment of PKC-alpha transfected cells with PMA caused a rapid, albeit transient, increase in PDE1 activity, which reached a maximum some 1 h after PMA challenge, before returning to resting levels some 2 h later. The residual isobutylmethylxanthine (IBMX)-insensitive PDE activity was dramatically reduced (approx. 4-fold) in the PKC-gamma transfectants, suggesting that the activity of the cyclic AMP-specific IBMX-insensitive PDE7 activity was selectively reduced by overexpression of this particular PKC isoform. These data identify a novel point of ‘cross-talk’ between the lipid and cyclic AMP signalling systems where the action of specific PKC isoforms is shown to cause the induction of Ca2+/CaM-stimulated PDE (PDE1) activity. It is suggested that this protein kinase C-mediated process might involve regulation of PDE1 gene expression by the AP-1 (fos/jun) system.


1993 ◽  
Vol 294 (2) ◽  
pp. 335-337 ◽  
Author(s):  
S E Wilkinson ◽  
P J Parker ◽  
J S Nixon

The protein kinase C (PKC) family of isoenzymes is believed to mediate a wide range of signal-transduction pathways in many different cell types. A series of bisindolylmaleimides have been evaluated as inhibitors of members of the conventional PKC family (PKCs-alpha, -beta, -gamma) and of a representative of the new, Ca(2+)-independent, PKC family, PKC-epsilon. In contrast with the indolocarbazole staurosporine, all the bisindolylmaleimides investigated showed slight selectivity for PKC-alpha over the other isoenzymes examined. In addition, bisindolylmaleimides bearing a conformationally restricted side-chain were less active as inhibitors of PKC-epsilon. Most noticeable of these was Ro 32-0432, which showed a 10-fold selectivity for PKC-alpha and a 4-fold selectivity for PKC-beta I over PKC-epsilon.


Sign in / Sign up

Export Citation Format

Share Document