Abstract 3139: The microRNA 17-92 Cluster Mediates Sonic Hedgehog-driven Neurogenesis In Ischemic Neural Progenitor Cells

Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Xianshuang Liu ◽  
Michael Chopp ◽  
Tao Tang ◽  
Haifa Kassis ◽  
Jennifer Xu ◽  
...  

Background: The Sonic hedgehog (Shh) pathway regulates stroke-induced neurogenesis. The present study investigated the functional role of the microRNA 17-92 (miR17-92) cluster in this process. Methods and Results: Analysis of miRNA microarray and real-time RT-PCR revealed that stroke substantially increased levels of individual members of the miR17-92 cluster: miR-18a (1.8±0.3), miR-19a (2.5±0.4), and miR-92a (1.9±0.3) expression in neural progenitor cells (NPCs) harvested from the subventricular zone (SVZ) of ischemic rats (n=6). Overexpression of the miR17-92 cluster in cultured NPCs significantly increased NPC proliferation measured by the number of BrdU positive cells (52±4% vs 28±2% in empty vector, n=3/group, p<0.05). Concurrently, overexpression of the miR17-92 cluster reduced PTEN (phosphatase and tensin homolog), a target of the miR17-92 cluster, protein levels by 70% compared to levels in NPCs transfected with an empty vector. PTEN suppresses cell proliferation. These data suggest that the stroke-upregulated miR17-92 cluster enhances NPC proliferation via downregulation of PTEN. To examine whether Shh regulates miR17-92 cluster expression, NPCs were incubated with recombinant human Shh (rhShh, 100ng/ml). We found that rhShh significantly (p<0.05) increased levels of individual members of the miR17-92 cluster: miR-18a (2.1±0.1), miR-19a (1.3±0.7), miR-19b (1.5±0.6) and miR-92a (1.9±0.8). Blockage of a Shh receptor Smo with cyclopamine suppressed rhShh-increased levels of miR-18a (0.9±0.08), miR-19a (0.7±0.01), miR-19b (0.6±0.05) and miR-92a (0.8±0.04). Attenuation of endogenous Shh in NPCs with siRNA also substantially decreased levels of miR-18a (0.6±0.1), miR-19a (0.4±0.05) and miR-92a (0.6±0.1) compared with levels in NPCs transfected with scrambled siRNA (1.0±0.2, n=3), indicating that Shh regulates miR17-92 expression. MYC is a downstream target of Shh. Western blots showed that stroke increased the protein level of N-MYC 1.8 fold in SVZ tissues and incubation of NPCs with rhShh elevated N-MYC levels by 1.8 fold, which was abrogated by cyclopamine (1.3 fold). N-MYC transduction resulted in significant increases in expression of the primary miR17-92 cluster (2.1±0.3 vs 1.0±0.2 in control group, n=3, p<0.05). These data suggest that the Shh pathway recruits N-MYC to regulate miR17-92 cluster expression in NPCs. Conclusion: Our data suggest a functional role of the miR17-92 cluster in mediating stroke-induced neurogenesis by the SHH/MYC signaling pathway, which provides new insight into molecular mechanisms of stroke-induced neurogenesis.

2013 ◽  
Vol 38 (9) ◽  
pp. 1960-1972 ◽  
Author(s):  
Ki Chan Kim ◽  
Ji-Woon Kim ◽  
Chang Soon Choi ◽  
Sun Young Han ◽  
Jae Hoon Cheong ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 096368972092027
Author(s):  
Wesley M. Tierney ◽  
Toni L. Uhlendorf ◽  
Aaron J.J. Lemus ◽  
Bianca A. Ortega ◽  
Jesse Magaña ◽  
...  

The spastic Han Wistar (sHW) rat serves as a model for human ataxia presenting symptoms of motor deterioration, weight loss, shortened lifespan, and Purkinje neuron loss. Past studies revealed that human neural progenitor cells (NPCs) improved ataxic symptoms at 20 d posttransplantation in sHW rats. In this study, we investigated the fate and longer-term effectiveness of these transplanted NPCs. Rats were placed into four treatment groups: an untreated normal control group ( n = 10), an untreated mutant rat control ( n = 10), a mutant group that received an injection of dead NPCs ( n = 9), and a mutant group that received live NPCs ( n = 10). Bilateral cerebellar injections containing 500,000 of either live or dead NPCs were performed on mutant sHW rats at 40 d of age. Motor activity for all mutant rats started to decline in open field testing around day 35. However, at day 45, the live NPC-treated mutants exhibited significant improvements in open field activity. Similar improvements were observed during rotarod testing and weight gain through the completion of the experiments (100 d). Immunohistochemistry revealed few surviving human NPCs in the cerebella of 80- and 100-d-old NPC-treated mutants; while cresyl violet staining revealed that live NPC-treated mutants had significantly more surviving Purkinje neurons compared to mutants that were untreated or received dead NPCs. Direct stereotactic implantation of NPCs alleviated the symptoms of ataxia, acting as a neuroprotectant, supporting future clinical applications of these NPCs in the areas of ataxia as well as other neurodegenerative diseases.


2014 ◽  
Vol 220 (4) ◽  
pp. 2073-2085 ◽  
Author(s):  
Chiao-Chi V. Chen ◽  
Yi-Hua Hsu ◽  
D. M. Jayaseema ◽  
Jeou-Yuan Joanne Chen ◽  
Dueng-Yuan Hueng ◽  
...  

2018 ◽  
Vol 33 ◽  
pp. 156-165 ◽  
Author(s):  
Baohan Pan ◽  
Hushan Ao ◽  
Su Liu ◽  
Yuming Xu ◽  
John W. McDonald ◽  
...  

Open Biology ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 160197 ◽  
Author(s):  
Nezha S. Benabdallah ◽  
Philippe Gautier ◽  
Betul Hekimoglu-Balkan ◽  
Laura A. Lettice ◽  
Shipra Bhatia ◽  
...  

The expression of genes with key roles in development is under very tight spatial and temporal control, mediated by enhancers. A classic example of this is the sonic hedgehog gene ( Shh ), which plays a pivotal role in the proliferation, differentiation and survival of neural progenitor cells both in vivo and in vitro. Shh expression in the brain is tightly controlled by several known enhancers that have been identified through genetic, genomic and functional assays. Using chromatin profiling during the differentiation of embryonic stem cells to neural progenitor cells, here we report the identification of a novel long-range enhancer for Shh—Shh-brain-enhancer-6 (SBE6)—that is located 100 kb upstream of Shh and that is required for the proper induction of Shh expression during this differentiation programme. This element is capable of driving expression in the vertebrate brain. Our study illustrates how a chromatin-focused approach, coupled to in vivo testing, can be used to identify new cell-type specific cis -regulatory elements, and points to yet further complexity in the control of Shh expression during embryonic brain development.


Epidemiology ◽  
2011 ◽  
Vol 22 ◽  
pp. S72
Author(s):  
Mingyu Xu ◽  
Chonghuai Yan ◽  
Ying Tian ◽  
Xiaobing Yuan

Sign in / Sign up

Export Citation Format

Share Document