Oncogenesis
Latest Publications


TOTAL DOCUMENTS

737
(FIVE YEARS 262)

H-INDEX

43
(FIVE YEARS 12)

Published By Springer Nature

2157-9024

Oncogenesis ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin J. Pridham ◽  
Farah Shah ◽  
Kasen R. Hutchings ◽  
Kevin L. Sheng ◽  
Sujuan Guo ◽  
...  

AbstractCircumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.


Oncogenesis ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Franz Ketzer ◽  
Hend Abdelrasoul ◽  
Mona Vogel ◽  
Ralf Marienfeld ◽  
Markus Müschen ◽  
...  

AbstractThe D-type cyclins (CCND1, CCND2, and CCND3) in association with CDK4/6 are known drivers of cell cycle progression. We reported previously that inactivation of FOXO1 confers growth arrest and apoptosis in B-ALL, partially mediated by subsequent depletion of CCND3. Given that previously the canonical MYC target CCND2 has been considered to play the major role in B-ALL proliferation, further investigation of the role of FOXO1 in CCND3 transcription and the role of CCND3 in B-ALL is warranted. In this study, we demonstrated that CCND3 is essential for the proliferation and survival of B-ALL, independent of the mutational background. Respectively, its expression at mRNA level exceeds that of CCND1 and CCND2. Furthermore, we identified FOXO1 as a CCND3-activating transcription factor in B-ALL. By comparing the effects of CCND3 depletion and CDK4/6 inhibition by palbociclib on B-ALL cells harboring different driver mutations, we found that the anti-apoptotic effect of CCND3 is independent of the kinase activity of the CCND3-CDK4/6 complex. Moreover, we found that CCND3 contributes to CDK8 transcription, which in part might explain the anti-apoptotic effect of CCND3. Finally, we found that increased CCND3 expression is associated with the development of resistance to palbociclib. We conclude that CCND3 plays an essential role in the maintenance of B-ALL, regardless of the underlying driver mutation. Moreover, downregulation of CCND3 expression might be superior to inhibition of CDK4/6 kinase activity in terms of B-ALL treatment.


Oncogenesis ◽  
2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Angela M. Carter ◽  
Nilesh Kumar ◽  
Brendon Herring ◽  
Chunfeng Tan ◽  
Rachael Guenter ◽  
...  

AbstractPancreatic neuroendocrine tumors (PanNETs) are a heterogeneous population of neoplasms that arise from hormone-secreting islet cells of the pancreas and have increased markedly in incidence over the past four decades. Non-functional PanNETs, which occur more frequently than hormone-secreting tumors, are often not diagnosed until later stages of tumor development and have poorer prognoses. Development of successful therapeutics for PanNETs has been slow, partially due to a lack of diverse animal models for pre-clinical testing. Here, we report development of an inducible, conditional mouse model of PanNETs by using a bi-transgenic system for regulated expression of the aberrant activator of Cdk5, p25, specifically in β-islet cells. This model produces a heterogeneous population of PanNETs that includes a subgroup of well-differentiated, non-functional tumors. Production of these tumors demonstrates the causative potential of aberrantly active Cdk5 for generation of PanNETs. Further, we show that human PanNETs express Cdk5 pathway components, are dependent on Cdk5 for growth, and share genetic and transcriptional overlap with the INS-p25OE model. The utility of this model is enhanced by the ability to form tumor-derived allografts. This new model of PanNETs will facilitate molecular delineation of Cdk5-dependent PanNETs and the development of new targeted therapeutics.


Oncogenesis ◽  
2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Qing Liao ◽  
Yun Ren ◽  
Yuyi Yang ◽  
Xiaohui Zhu ◽  
Yunfei Zhi ◽  
...  

AbstractLIM and SH3 protein 1 (LASP1) is a metastasis-related protein reported to enhance tumor progression in colorectal cancer (CRC). However, the underlying mechanism is still elusive. The chaperonin protein containing TCP1 (CCT) is a cellular molecular chaperone complex, which is necessary for the correct folding of many proteins. It contains eight subunits, CCT1-8. CCT8 is overexpressed in many cancers, however, studies on CCT8 are limited and its role on CRC development and progression remains elusive. In this study, we confirmed that CCT8 and LASP1 can interact with each other and express positively in CRC cells. CCT8 could recover the ability of LASP1 to promote the invasion of CRC; CCT8 could significantly promote the proliferation, invasion, and metastasis of colorectal cells in vivo and in vitro. Mechanically, CCT8 inhibited the entry of WTp53 into the nucleus, and there was a negative correlation between the expression of CCT8 and the nuclear expression of WTp53 in clinical colorectal tissues. CCT8 promoted the cell cycle evolution and EMT progression of CRC by inhibiting the entry of WTp53 into the nucleus. Clinically, CCT8 was highly expressed in CRC. More importantly, the overall survival of CRC patients with high expression of CCT8 was worse than that of patients with low expression of CCT8. These findings indicate that as LASP1-modulated proteins, CCT8 plays a key role in promoting the progression of colorectal cancer, which provides a potential target for clinical intervention in patients with colorectal cancer.


Oncogenesis ◽  
2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Jung Hwan Yoon ◽  
Jung Woo Eun ◽  
Hassan Ashktorab ◽  
Duane T. Smoot ◽  
Jeong kyu Kim ◽  
...  

AbstractGenomic stability maintenance requires correct DNA replication, chromosome segregation, and DNA repair, while defects of these processes result in tumor development or cell death. Although abnormalities in DNA replication and repair regulation are proposed as underlying causes for genomic instability, the detailed mechanism remains unclear. Here, we investigated whether NKX6.3 plays a role in the maintenance of genomic stability in gastric epithelial cells. NKX6.3 functioned as a transcription factor for CDT1 and RPA1, and its depletion increased replication fork rate, and fork asymmetry. Notably, we showed that abnormal DNA replication by the depletion of NKX6.3 caused DNA damage and induced homologous recombination inhibition. Depletion of NKX6.3 also caused copy number alterations of various genes in the vast chromosomal region. Hence, our findings underscore NKX6.3 might be a crucial factor of DNA replication and repair regulation from genomic instability in gastric epithelial cells.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Xiaoqing Fan ◽  
Junqi Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Wanxiang Niu ◽  
...  

Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Kuangguo Zhou ◽  
Mi Zhou ◽  
Ling Cheng ◽  
Xing Chen ◽  
Xiaomin Wang ◽  
...  

AbstractAcute myeloid leukemia (AML) is a deadly cancer characterized by an expanded self-renewal capacity that is associated with the accumulation of immature myeloid cells. Emerging evidence shows that methyl-CpG-binding domain protein 2 (MBD2), a DNA methylation reader, often participates in the transcriptional silencing of hypermethylated genes in cancer cells. Nevertheless, the role of MBD2 in AML remains unclear. Herein, by using an MLL-AF9 murine model and a human AML cell line, we observed that loss of MBD2 could delay the initiation and progression of leukemia. MBD2 depletion significantly reduced the leukemia burden by decreasing the proportion of leukemic stem cells (LSCs) and inhibiting leukemia cell proliferation in serial transplantation experiments, thereby allowing leukemic blasts to transition to a more mature state reflecting normal myelopoiesis. Both gene expression analyses and bioinformatic studies revealed that MBD2 negatively modulated genes related to myeloid differentiation, and was necessary to sustain the MLL-AF9 oncogene-induced gene program. We further demonstrated that MBD2 could promote LSC cell cycle progression through epigenetic regulation of CDKN1C transcription probably by binding to its promoter region. Taken together, our data suggest that MBD2 promotes AML development and could be a therapeutic target for myeloid malignancies.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Ming-Da Wang ◽  
Nan-Ya Wang ◽  
Hui-Lu Zhang ◽  
Li-Yang Sun ◽  
Qiu-Ran Xu ◽  
...  

AbstractAberrant lipid metabolism is an essential feature of hepatocellular carcinoma (HCC). Fatty acid transport protein-5 (FATP5) is highly expressed in the liver and is involved in the fatty acid transport pathway. However, the potential role of FATP5 in the pathogenesis of HCC remains largely unknown. Herein, we showed that FATP5 was downregulated in HCC tissues and even much lower in vascular tumor thrombi. Low expression of FATP5 was correlated with multiple aggressive and invasive clinicopathological characteristics and contributed to tumor metastasis and a poor prognosis in HCC patients. FATP5 inhibited the epithelial–mesenchymal transition (EMT) process and suppressed HCC cell migration and invasion, while silencing FATP5 had the opposite effects. Mechanistically, knockdown of FATP5 promoted cellular glycolytic flux and ATP production, thus suppressing AMP-activated protein kinase (AMPK) and activating its downstream signaling mammalian target of rapamycin (mTOR) to support HCC progression and metastasis. Activation of AMPK using metformin reversed the EMT program and impaired the metastatic capacity of FATP5-depleted HCC cells. Collectively, FATP5 served as a novel suppressor of HCC progression and metastasis partly by regulating the AMPK/mTOR pathway in HCC, and targeting the FATP5-AMPK axis may be a promising therapeutic strategy for personalized HCC treatment.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Rida Iftikhar ◽  
Harrison M. Penrose ◽  
Angelle N. King ◽  
Joshua S. Samudre ◽  
Morgan E. Collins ◽  
...  

AbstractObesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Takefumi Uemura ◽  
Takehiro Suzuki ◽  
Naoshi Dohmae ◽  
Satoshi Waguri

AbstractThe role of Golgi/endosome-localized clathrin adapters in the maintenance of steady-state cell surface epidermal growth factor receptor (EGFR) is not well known. Here, we show that EGFR associates preferentially with both AP-1 and GGA2 in vitro. AP-1 depletion caused a reduction in the EGFR protein by promoting its lysosomal degradation. Triple immunofluorescence microscopy and proximity ligation assays demonstrated that the interaction of EGFR with AP-1 or GGA2 occurred more frequently in Rab11-positive recycling endosomes than in Rab5-positive early endosomes. Biochemical recycling assay revealed that the depletion of AP-1 or GGA2 significantly suppressed EGFR recycling to the plasma membrane regardless of the EGF stimulation. Depletion of AP-1 or GGA2 also reduced cell contents of other tyrosine kinases, MET and ErbB4, and therefore, suppressed the growth of H1975 cancer cells in culture and xenograft model. Moreover, AP-1 was expressed in endosomes at higher levels in some cancer tissues. Collectively, these results suggest that AP-1 and GGA2 function in recycling endosomes to retrieve endocytosed EGFR, thereby sustaining its cell surface expression and, consequently, cancer cell growth.


Sign in / Sign up

Export Citation Format

Share Document