Abstract 138: Correlation of Cerebrovascular Reserve Assessed by Acetazolamide-stress SPECT With Collaterals on Arterial Spin-labeling MRI in Patients With Carotid Occlusive Disease

Stroke ◽  
2019 ◽  
Vol 50 (Suppl_1) ◽  
Author(s):  
Hyunkoo Kang ◽  
Yoone Kim
PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0229444 ◽  
Author(s):  
Henri J. M. M. Mutsaerts ◽  
Jan Petr ◽  
Reinoud P. H. Bokkers ◽  
Ronald M. Lazar ◽  
Randolph S. Marshall ◽  
...  

Author(s):  
Jonas Schollenberger ◽  
Nicholas H. Osborne ◽  
Luis Hernandez-Garcia ◽  
C. Alberto Figueroa

Cerebral hemodynamics in the presence of cerebrovascular occlusive disease (CVOD) are influenced by the anatomy of the intracranial arteries, the degree of stenosis, the patency of collateral pathways, and the condition of the cerebral microvasculature. Accurate characterization of cerebral hemodynamics is a challenging problem. In this work, we present a strategy to quantify cerebral hemodynamics using computational fluid dynamics (CFD) in combination with arterial spin labeling MRI (ASL). First, we calibrated patient-specific CFD outflow boundary conditions using ASL-derived flow splits in the Circle of Willis. Following, we validated the calibrated CFD model by evaluating the fractional blood supply from the main neck arteries to the vascular territories using Lagrangian particle tracking and comparing the results against vessel-selective ASL (VS-ASL). Finally, the feasibility and capability of our proposed method were demonstrated in two patients with CVOD and a healthy control subject. We showed that the calibrated CFD model accurately reproduced the fractional blood supply to the vascular territories, as obtained from VS-ASL. The two patients revealed significant differences in pressure drop over the stenosis, collateral flow, and resistance of the distal vasculature, despite similar degrees of clinical stenosis severity. Our results demonstrated the advantages of a patient-specific CFD analysis for assessing the hemodynamic impact of stenosis.


2020 ◽  
pp. 028418512091711
Author(s):  
Hiroshi Itagaki ◽  
Yasuaki Kokubo ◽  
Kanako Kawanami ◽  
Shinji Sato ◽  
Yuki Yamada ◽  
...  

Background Arterial transit time correction by data acquisition with multiple post-labeling delays (PLDs) or relatively long PLDs is expected to obtain more accurate imaging in cases of the cerebrovascular steno-occlusive disease. However, there have so far been no reports describing the significance of arterial spin labeling (ASL) images at short PLDs regarding the evaluation of cerebral circulation in ischemic cerebrovascular disease. Purpose To clarify the role of short-PLD ASL in cerebrovascular steno-occlusive disease. Material and Methods Fifty-three patients with cerebrovascular steno-occlusive disease were included in this study. All patients underwent ASL magnetic resonance imaging and 15O-PET within two days of each modality. To compare the ASL findings with each parameter of PET, the right-to-left (R/L) ratio, defined as the right middle cerebral artery (MCA) value/left MCA value, was calculated. Results There is a significant correlation between the ASL images at a short PLD and the ratio of cerebral blood flow and cerebral blood volume by 15O-PET, which may accurately reflect the cerebral perfusion pressure. A receiver operating characteristic curve analysis indicated that ASL images at PLD 1000 and 1500 ms were more accurate than at PLD 2000–3000 ms for the detection of a ≥10% change in the PET cerebral blood flow. Conclusion ASL images at shorter PLDs may be useful at least as a screening modality to detect the changes in the cerebral circulation in cerebrovascular steno-occlusive disease. We must evaluate ASL images at multiple PLDs while considering the arterial transit time of each case at present.


2017 ◽  
Vol 39 (1) ◽  
pp. 84-90 ◽  
Author(s):  
H.J. Choi ◽  
C.-H. Sohn ◽  
S.-H. You ◽  
R.-E. Yoo ◽  
K.M. Kang ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e87143 ◽  
Author(s):  
Matthias A. Mutke ◽  
Vince I. Madai ◽  
Federico C. von Samson-Himmelstjerna ◽  
Olivier Zaro Weber ◽  
Gajanan S. Revankar ◽  
...  

2019 ◽  
Vol 83 (2) ◽  
pp. 731-748 ◽  
Author(s):  
Moss Y. Zhao ◽  
Lena Václavů ◽  
Esben T. Petersen ◽  
Bart J. Biemond ◽  
Magdalena J. Sokolska ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Vaishnavi L. Rao ◽  
Laura M. Prolo ◽  
Jonathan D. Santoro ◽  
Michael Zhang ◽  
Jennifer L. Quon ◽  
...  

Background and Purpose: Cerebrovascular reserve (CVR) inversely correlates with stroke risk in children with Moyamoya disease and may be improved by revascularization surgery. We hypothesized that acetazolamide-challenged arterial spin labeling MR perfusion quantifies augmentation of CVR achieved by revascularization and correlates with currently accepted angiographic scoring criteria. Methods: We retrospectively identified pediatric patients with Moyamoya disease or syndrome who received cerebral revascularization at ≤18 years of age between 2012 and 2019 at our institution. Using acetazolamide-challenged arterial spin labeling, we compared postoperative CVR to corresponding preoperative values and to postoperative perfusion outcomes classified by Matsushima grading. Results: In this cohort, 32 patients (17 males) with Moyamoya underwent 29 direct and 16 indirect extracranial-intracranial bypasses at a median 9.7 years of age (interquartile range, 7.6–15.7). Following revascularization, median CVR increased within the ipsilateral middle cerebral artery territory (6.9 mL/100 g per minute preoperatively versus 16.5 mL/100 g per minute postoperatively, P <0.01). No differences were observed in the ipsilateral anterior cerebral artery ( P =0.13) and posterior cerebral artery ( P =0.48) territories. Postoperative CVR was higher in the ipsilateral middle cerebral artery territories of patients who achieved Matsushima grade A perfusion, in comparison to those with grades B or C (25.8 versus 17.5 mL, P =0.02). The method of bypass (direct or indirect) did not alter relative increases in CVR (8 versus 3.8 mL/100 g per minute, P =0.7). Conclusions: Acetazolamide-challenged arterial spin labeling noninvasively quantifies augmentation of CVR following surgery for Moyamoya disease and syndrome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Markus Fahlström ◽  
Johan Wikström ◽  
Ljubisa Borota ◽  
Per Enblad ◽  
Anders Lewén

Cerebrovascular reserve capacity (CVR), an important predictor of ischaemic events and a prognostic factor for patients with moyamoya disease (MMD), can be assessed by measuring cerebral blood flow (CBF) before and after administration of acetazolamide (ACZ). Often, a single CBF measurement is performed between 5 and 20 min after ACZ injection. Assessment of the temporal response of the vasodilation secondary to ACZ administration using several repeated CBF measurements has not been studied extensively. Furthermore, the high standard deviations of the group-averaged CVRs reported in the current literature indicate a patient-specific dispersion of CVR values over a wide range. This study aimed to assess the temporal response of the CBF and derived CVR during ACZ challenge using arterial spin labeling in patients with MMD. Eleven patients with MMD were included before or after revascularisation surgery. CBF maps were acquired using pseudo-continuous arterial spin labeling before and 5, 15, and 25 min after an intravenous ACZ injection. A vascular territory template was spatially normalized to patient-specific space, including the bilateral anterior, middle, and posterior cerebral arteries. CBF increased significantly post-ACZ injection in all vascular territories and at all time points. Group-averaged CBF and CVR values remained constant throughout the ACZ challenge in most patients. The maximum increase in CBF occurred most frequently at 5 min post-ACZ injection. However, peaks at 15 or 25 min were also present in some patients. In 68% of the affected vascular territories, the maximum increase in CBF did not occur at 15 min. In individual cases, the difference in CVR between different time points was between 1 and 30% points (mean difference 8% points). In conclusion, there is a substantial variation in CVR between different time points after the ACZ challenge in patients with MMD. Thus, there is a risk that the use of a single post-ACZ measurement time point overestimates disease progression, which could have wide implications for decision-making regarding revascularisation surgery and the interpretation of the outcome thereof. Further studies with larger sample sizes using multiple CBF measurements post-ACZ injection in patients with MMD are encouraged.


Sign in / Sign up

Export Citation Format

Share Document