scholarly journals Medical Laboratory Accreditation according to ISO 15189:2003.The Mexican Experience

2007 ◽  
pp. 188-192 ◽  
Author(s):  
Rosa Isabel Sierra-Amor ◽  
Maribel Lopez-Martinez

2008 ◽  
Vol 27 (2) ◽  
pp. 144-147
Author(s):  
Ljubinka Gligić

Status of Development and Implementation of Medical Laboratories Accreditation in SerbiaThrough the release of the SRPS ISO 15189:2008 standard entitled >>Medicinske laboratorije: posebni zahtevi za kvalitet i kompetentnost<< conditions have been created for medical laboratory accreditation in Serbia. The application of the ISO 15189:2007 standard is an accepted mechanism for improvement of the quality of medical laboratory services throughout EU today. In that way, different approaches to the quality improvement of medical laboratories have been harmonized. Functional organisation of the accreditation process of medical laboratories in most European countries is mainly carried out in cooperation with national accreditation bodies, medical experts appointed by scientist associations and health departments. This type of collaboration has proven successful in the United Kingdom, Germany, Hungary, France, Finland, Croatia, etc. The experiences of the Accreditation Board of Serbia (ABS) in medical laboratory accreditation according to the SRPS ISO/IEC 17025:2006 standard (5 laboratories have been accredited) and the positive experiences of European countries in accreditation process constitute the basis for the development of the program for medical laboratory accreditation in Serbia. The first step in this direction is the set-up of the Committee consisting of experts from different medical fields, ABS experts and representatives of the competent Ministry, as well as the definition of their tasks, such as: preparation of the necessary documentation, set-up and preparation of qualification criteria and training programs for assessors, participation in the development of the external quality assessment scheme through interlaboratory testing, liaison with the European organisations for accreditation, organisation of mutual assessments with national and international assessors, participation in decision making on accreditation and accreditation maintenance.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Neven Saleh ◽  
Ahmed Abo Agyla

AbstractMedical laboratory accreditation becomes a trend to be trustable for diagnosis of diseases. It is always performed at regular intervals to assure competence of quality management systems (QMS) based on pre-defined standards. However, few attempts were carried out to assess the quality level of medical laboratory services. Moreover, there is no realistic study that classifies and makes analyses of laboratory performance based on a computational model. The purpose of this study was to develop an integrated system for medical laboratory accreditation that assesses QMS against ISO 15189. In addition, a deep analysis of factors that sustain accreditation was presented. The system started with establishing a core matrix that maps QMS elements with ISO 15189 clauses. Through this map, a questionnaire was developed to measure the performance. Therefore, score indices were calculated for the QMS. A fuzzy logic model was designed based on the calculated scores to classify medical laboratories according to their tendency for accreditation. Further, in case of failure of accreditation, cause-and-effect root analysis was done to realize the causes. Finally, cloud computing principles were employed to launch a web application in order to facilitate user interface with the proposed system. In verification, the system has been tested using a dataset of 12 medical laboratories in Egypt. Results have proved system robustness and consistency. Thus, the system is considered as a self-assessment tool that demonstrates points of weakness and strength.



2010 ◽  
Vol 30 (02) ◽  
pp. 55-62
Author(s):  
M. Fritzer-Szekeres

SummaryDuring the 20th century understanding for quality has changed and international and national requirements for quality have been published. Therefore also medical branches started to establish quality management systems. Quality assurance has always been important for medical laboratories. Certification according to the standard ISO 9001 and accreditation according to the standard ISO 17025 have been the proof of fulfilling quality requirements. The relatively new standard ISO 15189 is the first standard for medical laboratories. This standard includes technical and management requirements for the medical laboratory. The main focus is the proof of competence within the personnel. As this standard is accepted throughout the European Union an increase in accreditations of medical laboratories is predictable.



Author(s):  
Elena Vitalievna Perminova

Clinical laboratory diagnostics is a medical specialty, which is based on in vitro diagnostic studies of biomaterial obtained from an individual. At the present stage, there are three main types of organization of the laboratory research process — a laboratory service as part of a medical and preventive institution, a centralized laboratory where biomaterials are delivered for research from various healthcare institutions, as well as mobile laboratories that allow conducting the research directly at the patient’s bedside. This discipline involves the use of a wide variety of diagnostic research methods and the use of a huge number of specific techniques. Their list should include carrying out hematological, microbiological, virological, immunological, serological, parasitic, and biochemical studies. Also, when organizing laboratory diagnostic activities, a number of other studies (cytological, histological, toxicological, genetic, molecular biological, etc.) are provided. A laboratory report is formulated after obtaining clinical data and comparing them with the obtained test results. The quality of laboratory tests is ensured through the systematic implementation of internal laboratory control, as well as participation in a national program for external quality assessment. The activities of the clinical diagnostic laboratory should be organized in accordance with the requirements of the standard GOST R ISO 15189–2015 «Medical laboratories. Particular requirements for quality and competence», which is based on the provisions of two more fundamental standards — ISO 9001 and ISO 17025, and adds a number of special requirements related to medical laboratories.



2003 ◽  
Vol 127 (8) ◽  
pp. 978-983 ◽  
Author(s):  
Jacqueline M. Seabrook ◽  
Roger A. Hubbard

Abstract Laboratories contemplating either the addition of new molecular tests or modifying methods approved by the Food and Drug Administration for human papillomavirus testing should be aware of a variety of procedural, performance, and regulatory issues surrounding such activity. Diagnostic medical laboratory testing in the United States is regulated by the Centers for Medicare and Medicaid Services, an agency formerly known as the Health Care Finance Administration. The regulatory vehicle of the Centers for Medicare and Medicaid Services is manifested in the Clinical Laboratory Improvement Amendments (CLIA). The CLIA program has put into place specific regulations for laboratory quality control, which includes specific recommendations for method validation. Regulations that must be followed regarding personnel, quality control, quality assurance, method validation, and proficiency testing depend on the complexity category of the individual test. All molecular diagnostic tests, including those for human papillomavirus, are considered high complexity. The Centers for Medicare and Medicaid Services retains the authority to allow private, national accreditation organizations to “deem” that a laboratory is compliant with CLIA '88 requirements. Accreditation organizations, such as the Joint Commission for Accreditation of Hospitals, the Commission on Office Laboratory Accreditation, and the College of American Pathologists (CAP), as well as several state medical laboratory–accrediting agencies, possess the authority to deem laboratories as “CLIA-approved.” The CAP, through its Laboratory Accreditation Program, has promoted standards for laboratory performance and method validation. In general, guidelines set forth in the CAP Laboratory Accreditation Program checklists specify that all clinical laboratory testing must essentially meet those requirements defined for high-complexity testing under CLIA '88, including test validation standards, reportable/reference ranges, performance criteria, and proficiency testing.



2019 ◽  
Vol 57 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Marc Thelen ◽  
Florent Vanstapel ◽  
Pika Meško Brguljan ◽  
Bernard Gouget ◽  
Guilaine Boursier ◽  
...  

Abstract ISO15189:2012 requires medical laboratories to document metrological traceability of their results. While the ISO17511:2003 standard on metrological traceability in laboratory medicine requires the use of the highest available level in the traceability chain, it recognizes that for many measurands there is no reference above the manufacturer’s selected measurement procedure and the manufacturer’s working calibrator. Some immunoassays, although they intend to measure the same quantity and may even refer to the same reference material, unfortunately produce different results because of differences in analytical selectivity as manufacturers select different epitopes and antibodies for the same analyte. In other cases, the cause is the use of reference materials, which are not commutable. The uncertainty associated with the result is another important aspect in metrological traceability implementation. As the measurement uncertainty on the clinical samples is influenced by the uncertainty of all steps higher in the traceability chain, laboratories should be provided with adequate and appropriate information on the uncertainty of the value assignment to the commercial calibrators that they use. Although the between-lot variation in value assignment will manifest itself as part of the long-term imprecision as estimated by the end-user, information on worst-case to be expected lot-lot variation has to be communicated to the end-user by the IVD provider. When laboratories use ancillary equipment that potentially could have a critical contribution to the reported results, such equipment needs verification of its proper calibration and criticality to the result uncertainty could be assessed by an approach based on risk analysis, which is a key element of ISO15189:2012 anyway. This paper discusses how the requirement for metrological traceability as stated in ISO15189 should be met by the medical laboratory and how this should be assessed by accreditation bodies.



2014 ◽  
Vol 19 (6) ◽  
pp. 473-476 ◽  
Author(s):  
Nooshafarin Safadel ◽  
Soghra Anjarani ◽  
Marjan Rahnamaye Farzami ◽  
Rana Amini ◽  
Siamak Mirab Samiee ◽  
...  
Keyword(s):  


Pathology ◽  
2002 ◽  
Vol 34 (2) ◽  
pp. 130-132
Author(s):  
Alexander R. Chang


Sign in / Sign up

Export Citation Format

Share Document