scholarly journals Interactions Between Forms of Memory: When Priming Hinders New Episodic Learning

2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 52-60 ◽  
Author(s):  
Anthony D. Wagner ◽  
Anat Maril ◽  
Daniel L. Schacter

Human memory consists of multiple forms, including priming and explicit memory. Although considerable evidence indicates that priming and explicit memory are functionally and neuroanatomically distinct, little is know about when and how these different forms of memory interact. Here, behavioral and functional magnetic resonance imaging (fMRI) methods were used to examine a novel and counterintuitive hypothesis: Priming during episodic encoding may be negatively associated with subsequent explicit memory. Using an experimental design that exploited known properties of spacing or lag effects, the magnitudes of behavioral and neural priming during a second study episode were varied and the relation between these magnitudes of priming during re-encoding and performance on a subsequent explicit memory test was examined. Results revealed that greater behavioral priming (reduced reaction times) and neural priming (reduced left inferior prefrontal brain activation) during re-encoding were associated with lower levels of subsequent explicit memory. Moreover, those subjects who demonstrated greater behavioral and neural priming effects during re-encoding following a long lag tended to demonstrate the least benefit in subsequent explicit memory due to this second study episode. These findings suggest that priming for past experiences can hinder new episodic encoding.

2011 ◽  
Vol 23 (7) ◽  
pp. 1597-1608 ◽  
Author(s):  
Talya Sadeh ◽  
Daphna Shohamy ◽  
Dana Rubi Levy ◽  
Niv Reggev ◽  
Anat Maril

The hippocampus and the striatum are thought to play distinct roles in learning and memory, each supporting an independent memory system. A fundamental question is whether, and how, these systems interact to jointly contribute to learning and memory. In particular, it remains unknown whether the striatum contributes selectively to implicit, habitual learning, or whether the striatum may also contribute to long-term episodic memory. Here, we show with functional magnetic resonance imaging (fMRI) that the hippocampus and the striatum interact cooperatively to support episodic memory formation. Participants were scanned during a memory encoding paradigm and, subsequently, were tested for memory of encoded items. fMRI data revealed that successful memory was associated with greater activity in both the hippocampus and the striatum (putamen) during encoding. Furthermore, activity in the hippocampus and the striatum was correlated within subjects for items that were later remembered, but not for items that were forgotten. Finally, across subjects, the strength of the correlation between the hippocampus and the striatum predicted memory success. These findings provide novel evidence for contributions of both the striatum and the hippocampus to successful episodic encoding and for a cooperative interaction between them.


2016 ◽  
Vol 47 (5) ◽  
pp. 877-888 ◽  
Author(s):  
S. Shiota ◽  
Y. Okamoto ◽  
G. Okada ◽  
K. Takagaki ◽  
M. Takamura ◽  
...  

BackgroundIt has been demonstrated that negatively distorted self-referential processing, in which individuals evaluate one's own self, is a pathogenic mechanism in subthreshold depression that has a considerable impact on the quality of life and carries an elevated risk of developing major depression. Behavioural activation (BA) is an effective intervention for depression, including subthreshold depression. However, brain mechanisms underlying BA are not fully understood. We sought to examine the effect of BA on neural activation during other perspective self-referential processing in subthreshold depression.MethodA total of 56 subjects underwent functional magnetic resonance imaging scans during a self-referential task with two viewpoints (self/other) and two emotional valences (positive/negative) on two occasions. Between scans, while the intervention group (n = 27) received BA therapy, the control group (n = 29) did not.ResultsThe intervention group showed improvement in depressive symptoms, increased activation in the dorsal medial prefrontal cortex (dmPFC), and increased reaction times during other perspective self-referential processing for positive words after the intervention. Also, there was a positive correlation between increased activation in the dmPFC and improvement of depressive symptoms. Additionally, there was a positive correlation between improvement of depressive symptoms and increased reaction times.ConclusionsBA increased dmPFC activation during other perspective self-referential processing with improvement of depressive symptoms and increased reaction times which were associated with improvement of self-monitoring function. Our results suggest that BA improved depressive symptoms and objective monitoring function for subthreshold depression.


Author(s):  
Byron Bernal

AbstractFunctional magnetic resonance imaging (fMRI) has become a broadly accepted presurgical mapping tool for pediatric populations with brain pathology. The aim of this article is to provide general guidelines on the pragmatic aspects of performing and processing fMRI, as well as interpreting its results across children of all age groups. Based on the author's accumulated experience of more than 20 years on this specific field, these guidelines consider many factors that include the particular physiology and anatomy of the child's brain, and how specific peculiarities may pose disadvantages or even certain advantages when performing fMRI procedures. The author carefully details the various challenges that the practitioner might face in dealing with limited volitional behavior and language comprehension of infants and small children and remedial strategies. The type and proper choice of task-based paradigms in keeping with the age and performance of the patient are discussed, as well as the appropriate selection and dosage of sedative agents and their inherent limitations. Recommendations about the scanner and settings for specific sequences are provided, as well as the required devices for appropriate stimulus delivery, response, and motion control. Practical aspects of fMRI postprocessing and quality control are discussed. Finally, given the relevance of resting-state-fMRI for use in noncooperative patients, a praxis-oriented guide to obtain, classify, and understand the spontaneous neural networks (utilizing independent component analysis) is also provided. The article concludes with a thorough discussion about the possible pitfalls at different stages of the fMRI process.


2019 ◽  
Vol 9 (5) ◽  
pp. 107 ◽  
Author(s):  
David F. Marks

Organisms are adapted to each other and the environment because there is an inbuilt striving toward security, stability, and equilibrium. A General Theory of Behavior connects imagery, affect, and action with the central executive system we call consciousness, a direct emergent property of cerebral activity. The General Theory is founded on the assumption that the primary motivation of all of consciousness and intentional behavior is psychological homeostasis. Psychological homeostasis is as important to the organization of mind and behavior as physiological homeostasis is to the organization of bodily systems. Consciousness processes quasi-perceptual images independently of the input to the retina and sensorium. Consciousness is the “I am” control center for integration and regulation of (my) thoughts, (my) feelings, and (my) actions with (my) conscious mental imagery as foundation stones. The fundamental, universal conscious desire for psychological homeostasis benefits from the degree of vividness of inner imagery. Imagery vividness, a combination of clarity and liveliness, is beneficial to imagining, remembering, thinking, predicting, planning, and acting. Assessment of vividness using introspective report is validated by objective means such as functional magnetic resonance imaging (fMRI). A significant body of work shows that vividness of visual imagery is determined by the similarity of neural responses in imagery to those occurring in perception of actual objects and performance of activities. I am conscious; therefore, I am.


2018 ◽  
Vol 115 (25) ◽  
pp. 6500-6505 ◽  
Author(s):  
Janani Prabhakar ◽  
Elliott G. Johnson ◽  
Christine Wu Nordahl ◽  
Simona Ghetti

Nonhuman research has implicated developmental processes within the hippocampus in the emergence and early development of episodic memory, but methodological challenges have hindered assessments of this possibility in humans. Here, we delivered a previously learned song and a novel song to 2-year-old toddlers during natural nocturnal sleep and, using functional magnetic resonance imaging, found that hippocampal activation was stronger for the learned song compared with the novel song. This was true regardless of whether the song was presented intact or backwards. Toddlers who remembered where and in the presence of which toy character they heard the song exhibited stronger hippocampal activation for the song. The results establish that hippocampal activation in toddlers reflects past experiences, persists despite some alteration of the stimulus, and is associated with behavior. This research sheds light on early hippocampal and memory functioning and offers an approach to interrogate the neural substrates of early memory.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziyan Yang ◽  
Constantine Sedikides ◽  
Keise Izuma ◽  
Tim Wildschut ◽  
Emiko S. Kashima ◽  
...  

AbstractAn experiment examined the potency of nostalgia—a sentimental longing for one’s past—to facilitate detection of death-related stimuli, using functional magnetic resonance imaging (fMRI) and behavioral techniques (i.e., judgmental accuracy, reaction times). We hypothesized and found that, at the neural level, nostalgic (relative to control) participants evinced more intense activation in right amygdala in response to death-related (vs. neutral) words. We also hypothesized and found that, at the behavioral level, nostalgic (relative to control) participants manifested greater accuracy in judging whether two death-related (vs. neutral) words belonged in the same category. Exploratory analyses indicated that nostalgic (relative to control) participants did not show faster reaction times to death-related (vs. neutral) words. In all, nostalgia appeared to aid in death threat detection. We consider implications for the relevant literatures.


Biofeedback ◽  
2011 ◽  
Vol 39 (2) ◽  
pp. 56-59 ◽  
Author(s):  
Shirley Telles ◽  
Bhat Ramachandra Raghavendra

Meditation is currently considered to be associated with increased awareness. In ancient yoga texts, two separate meditative states have been described. These are meditative focusing (dharana) and a state of mental expansiveness (dhyana). Two more mental states are described in another yoga text. These are random thinking (cancalata) and focusing while not in meditation (ekagrata). The physiological effects of these states have been assessed using autonomic variables, evoked potentials, functional magnetic resonance imaging, and performance in a cancellation task. The findings suggest that dhyana is associated with reduced sympathetic activity and increased vagal tone, whereas dharana does indeed improve performance in an attention task. Hence, correlating findings from ancient texts with contemporary science can be useful.


Sign in / Sign up

Export Citation Format

Share Document