Information Geometry of Mean-Field Approximation

2000 ◽  
Vol 12 (8) ◽  
pp. 1951-1968 ◽  
Author(s):  
Toshiyuki Tanaka

I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the “naive” mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics.

2001 ◽  
Vol 15 (05) ◽  
pp. 479-490 ◽  
Author(s):  
EMMANUELE CAPPELLUTI

The standard mean field slave-boson solution for the infinite-U Hubbard model is revised. A slightly modified version is proposed which includes properly the incoherent contribution of the localized states. In contrast to the standard mean field result, this new proposed solution defines a unique spectral function to be used in the calculation of local and not local quantities, and satisfies the correct thermodynamic relations. The same approach is applied also to the mean field approximation in terms of Hubbard operators. As a byproduct of this analysis, Luttinger's theorem is shown to be fulfilled in a natural way.


2013 ◽  
Vol 53 (6) ◽  
pp. 847-853 ◽  
Author(s):  
Hynek Lavička ◽  
Jan Novotný

In this work, we investigate the Model of Employment, Production and Consumption, as introduced in a series of papers by I. Wright [1–3] from the perspective of statistical physics, and we focus on the presence of equilibrium. The model itself belongs to the class of multi-agent computational models, which aim to explain macro-economic behavior using explicit micro-economic interactions.<br />Based on the mean-field approximation, we form the Fokker-Plank equation(s) and then formulate conditions forming the stationary solution, which results in a system of non-linear integral-differential equations. This approximation then allows the presence of non-equilibrium stationary states, where the model is a mixed additive-multiplicative model.


2013 ◽  
Vol 58 (4) ◽  
pp. 1401-1403 ◽  
Author(s):  
J.A. Bartkowska ◽  
R. Zachariasz ◽  
D. Bochenek ◽  
J. Ilczuk

Abstract In the present work, the magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the multiferroic composite was determined. The research material was ferroelectric-ferromagnetic composite on the based PZT and ferrite. We investigated the temperature dependences of the dielectric permittivity (") for the different frequency of measurement’s field. From the dielectric measurements we determined the temperature of phase transition from ferroelectric to paraelectric phase. For the theoretical description of the temperature dependence of the dielectric constant, the Hamiltonian of Alcantara, Gehring and Janssen was used. To investigate the dielectric properties of the multiferroic composite this Hamiltonian was expressed under the mean-field approximation. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.


2021 ◽  
Vol 7 (5) ◽  
pp. 69
Author(s):  
Catherine Cazelles ◽  
Jorge Linares ◽  
Mamadou Ndiaye ◽  
Pierre-Richard Dahoo ◽  
Kamel Boukheddaden

The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of local mean field approximation (LMFA). The systematic combined effect of the different types of couplings, consisting of (i) bulk short- and long-range interactions and (ii) edge and corner interactions at the surface mediated by the matrix environment, were investigated by using parameter values typical of SCO complexes. Gradual two and three hysteretic transition curves from the LS to HS states were obtained. The results were interpreted in terms of the competition between the structure-dependent order and disorder temperatures (TO.D.) of internal coupling origin and the ligand field-dependent equilibrium temperatures (Teq) of external origin.


1997 ◽  
Vol 11 (20) ◽  
pp. 867-875 ◽  
Author(s):  
A. A. Rodríaguez ◽  
E. Medina

We study novel geometrical and transport properties of a 2D model of disordered fibre networks. To assess the geometrical structure we determine, analytically, the probability distribution for the number of fibre intersections and resulting segment sizes in the network as a function of fibre density and length. We also determine, numerically, the probability distribution of pore perimeters and areas. We find a non-monotonous behavior of the perimeter distribution whose main features can be explained by solving for two simplified models of the line network. Finally we formulate a mean field approximation to conduction, above the percolation threshold, using the derived results. Relevance of the results to fracture networks will be discussed.


Sign in / Sign up

Export Citation Format

Share Document