Judging Perceived and Traversed Distance in Virtual Environments

1998 ◽  
Vol 7 (2) ◽  
pp. 144-167 ◽  
Author(s):  
Bob G. Witmer ◽  
Paul B. Kline

The ability to accurately estimate distance is an essential component of navigating large-scale spaces. Although the factors that influence distance estimation have been a topic of research in real-world environments for decades and are well known, research on distance estimation in virtual environments (VEs) has only just begun. Initial investigations of distance estimation in VEs suggest that observers are less accurate in estimating distance in VEs than in the real world (Lampton et al., 1995). Factors influencing distance estimates may be divided into those affecting perceived distance (visual cues only) and those affecting traversed distance to include visual, cognitive, and proprioceptive cues. To assess the contribution of the various distance cues in VEs, two experiments were conducted. The first required a static observer to estimate the distance to a cylinder placed at various points along a 130-foot hallway. This experiment examined the effects of floor texture, floor pattern, and object size on distance estimates in a VE. The second experiment required a moving observer to estimate route segment distances and total route distances along four routes, each totaling 1210 feet. This experiment assessed the effects of movement method, movement speed, compensatory cues, and wall texture density. Results indicate that observers underestimate distances both in VEs and in the real world, but the underestimates are more extreme in VEs. Texture did not reliably affect the distance estimates, providing no compensation for the gross underestimates of distance in VE. Traversing a distance improves the ability to estimate that distance, but more natural means of moving via a treadmill do not necessarily improve distance estimates over traditional methods of moving in VE (e.g., using a joystick). The addition of compensatory cues (tone every 10 feet traversed on alternate route segments) improves VE distance estimation to almost perfect performance.

Author(s):  
Donald R. Lampton ◽  
Daniel P. McDonald ◽  
Michael Singer ◽  
James P. Bliss

This paper describes an experiment to evaluate a procedure for measuring distance perception in immersive VEs. Forty-eight subjects viewed a VE with a Head Mounted Display (HMD), a Binocular Omni-Oriented Monitor (BOOM), or a computer monitor. Subjects estimated the distance to a figure of known height that was initially 40 ft away. As the figure moved forward, subjects indicated when the figure was perceived to be 30, 20, 10, 5, and 2.5 ft away. A separate group of 36 subjects performed the task in a real-world setting roughly comparable to the VE. VE distance estimation was highly variable across subjects. For distance perception involving a moving figure, in the VE conditions most subjects called out before the figure had closed to the specified distances. Distance estimation was least accurate with the monitor. In the real world, most subjects called out after the figure had closed to or passed the specified distances. Ways to improve the procedure are discussed.


2004 ◽  
Vol 4 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Thomas Reuding ◽  
Pamela Meil

The predictive value and the reliability of evaluations made in immersive projection environments are limited when compared to the real world. As in other applications of numerical simulations, the acceptance of such techniques does not only depend on the stability of the methods, but also on the quality and credibility of the results obtained. In this paper, we investigate the predictive value of virtual reality and virtual environments when used for engineering assessment tasks. We examine the ergonomics evaluation of a vehicle interior, which is a complex activity relying heavily on know-how gained from personal experience, and compare performance in a VE with performance in the real world. If one assumes that within complex engineering processes certain types of work will be performed by more or less the same personnel, one can infer that a fairly consistent base of experience-based knowledge exists. Under such premises and if evaluations are conducted as comparisons within the VE, we believe that the reliability of the assessments is suitable for conceptual design work. Despite a number of unanswered questions at this time we believe this study leads to a better understanding of what determines the reliability of results obtained in virtual environments, thus making it useful for optimizing virtual prototyping processes and better utilization of the potential of VR and VEs in company work processes.


2019 ◽  
Vol 1 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Jianfeng Zhang ◽  
Xian‐Sheng Hua ◽  
Jianqiang Huang ◽  
Xu Shen ◽  
Jingyuan Chen ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 194-197 ◽  
Author(s):  
Lee Harten ◽  
Amitay Katz ◽  
Aya Goldshtein ◽  
Michal Handel ◽  
Yossi Yovel

How animals navigate over large-scale environments remains a riddle. Specifically, it is debated whether animals have cognitive maps. The hallmark of map-based navigation is the ability to perform shortcuts, i.e., to move in direct but novel routes. When tracking an animal in the wild, it is extremely difficult to determine whether a movement is truly novel because the animal’s past movement is unknown. We overcame this difficulty by continuously tracking wild fruit bat pups from their very first flight outdoors and over the first months of their lives. Bats performed truly original shortcuts, supporting the hypothesis that they can perform large-scale map-based navigation. We documented how young pups developed their visual-based map, exemplifying the importance of exploration and demonstrating interindividual differences.


2020 ◽  
Vol 34 (04) ◽  
pp. 6194-6201
Author(s):  
Jing Wang ◽  
Weiqing Min ◽  
Sujuan Hou ◽  
Shengnan Ma ◽  
Yuanjie Zheng ◽  
...  

Logo classification has gained increasing attention for its various applications, such as copyright infringement detection, product recommendation and contextual advertising. Compared with other types of object images, the real-world logo images have larger variety in logo appearance and more complexity in their background. Therefore, recognizing the logo from images is challenging. To support efforts towards scalable logo classification task, we have curated a dataset, Logo-2K+, a new large-scale publicly available real-world logo dataset with 2,341 categories and 167,140 images. Compared with existing popular logo datasets, such as FlickrLogos-32 and LOGO-Net, Logo-2K+ has more comprehensive coverage of logo categories and larger quantity of logo images. Moreover, we propose a Discriminative Region Navigation and Augmentation Network (DRNA-Net), which is capable of discovering more informative logo regions and augmenting these image regions for logo classification. DRNA-Net consists of four sub-networks: the navigator sub-network first selected informative logo-relevant regions guided by the teacher sub-network, which can evaluate its confidence belonging to the ground-truth logo class. The data augmentation sub-network then augments the selected regions via both region cropping and region dropping. Finally, the scrutinizer sub-network fuses features from augmented regions and the whole image for logo classification. Comprehensive experiments on Logo-2K+ and other three existing benchmark datasets demonstrate the effectiveness of proposed method. Logo-2K+ and the proposed strong baseline DRNA-Net are expected to further the development of scalable logo image recognition, and the Logo-2K+ dataset can be found at https://github.com/msn199959/Logo-2k-plus-Dataset.


2019 ◽  
Vol 9 (9) ◽  
pp. 1797
Author(s):  
Chen ◽  
Lin

Augmented reality (AR) is an emerging technology that allows users to interact with simulated environments, including those emulating scenes in the real world. Most current AR technologies involve the placement of virtual objects within these scenes. However, difficulties in modeling real-world objects greatly limit the scope of the simulation, and thus the depth of the user experience. In this study, we developed a process by which to realize virtual environments that are based entirely on scenes in the real world. In modeling the real world, the proposed scheme divides scenes into discrete objects, which are then replaced with virtual objects. This enables users to interact in and with virtual environments without limitations. An RGB-D camera is used in conjunction with simultaneous localization and mapping (SLAM) to obtain the movement trajectory of the user and derive information related to the real environment. In modeling the environment, graph-based segmentation is used to segment point clouds and perform object segmentation to enable the subsequent replacement of objects with equivalent virtual entities. Superquadrics are used to derive shape parameters and location information from the segmentation results in order to ensure that the scale of the virtual objects matches the original objects in the real world. Only after the objects have been replaced with their virtual counterparts in the real environment converted into a virtual scene. Experiments involving the emulation of real-world locations demonstrated the feasibility of the proposed rendering scheme. A rock-climbing application scenario is finally presented to illustrate the potential use of the proposed system in AR applications.


1993 ◽  
Vol 2 (4) ◽  
pp. 297-313 ◽  
Author(s):  
Martin R. Stytz ◽  
Elizabeth Block ◽  
Brian Soltz

As virtual environments grow in complexity, size, and scope users will be increasingly challenged in assessing the situation in them. This will occur because of the difficulty in determining where to focus attention and in assimilating and assessing the information as it floods in. One technique for providing this type of assistance is to provide the user with a first-person, immersive, synthetic environment observation post, an observatory, that permits unobtrusive observation of the environment without interfering with the activity in the environment. However, for large, complex synthetic environments this type of support is not sufficient because the mere portrayal of raw, unanalyzed data about the objects in the virtual space can overwhelm the user with information. To address this problem, which exists in both real and virtual environments, we are investigating the forms of situation awareness assistance needed by users of large-scale virtual environments and the ways in which a virtual environment can be used to improve situation awareness of real-world environments. A technique that we have developed is to allow a user to place analysis modules throughout the virtual environment. Each module provides summary information concerning the importance of the activity in its portion of the virtual environment to the user. Our prototype system, called the Sentinel, is embedded within a virtual environment observatory and provides situation awareness assistance for users within a large virtual environment.


2018 ◽  
Vol 33 (4) ◽  
pp. 621-649 ◽  
Author(s):  
Sophie Chao

This article explores how indigenous Marind of West Papua conceptualize the radical socio-environmental transformations wrought by large-scale deforestation and oil palm expansion on their customary lands and forests. Within the ecology of the Marind lifeworld, oil palm constitutes a particular kind of person, endowed with particular agencies and affects. Its unwillingness to participate in symbiotic socialities with other species jeopardizes the well-being of the life forms populating a dynamic multispecies cosmology, including humans. Drawing from ontological theories and the multispecies approach, I show how people in a remote place engage with adverse environmental transformations enacted by an other-than-human actor. Assumptions of human exceptionalism come under question in the context of a vegetal being that is exceptional in its own particular and destructive ways. Arguing for greater attention to other-than-human species that are unloving rather than unloved, I explore the epistemological frictions that arise from combining the anthropology of ontology with multispecies ethnography. I also attend to the implications of these theoretical positions in the real world of advocacy for those struggling in and against growing social and ecological precariousness.


2003 ◽  
Vol 36 (12) ◽  
pp. 105-110
Author(s):  
Omar A.A. Orqueda ◽  
José Figueroa ◽  
Osvaldo E. Agamennoni

Sign in / Sign up

Export Citation Format

Share Document