The Role of Awareness in Processing of Oculomotor Capture: Evidence from Event-related Potentials

2008 ◽  
Vol 20 (12) ◽  
pp. 2285-2297 ◽  
Author(s):  
Artem V. Belopolsky ◽  
Arthur F. Kramer ◽  
Jan Theeuwes

Previous research has shown that task-irrelevant onsets trigger an eye movement in their direction. Such oculomotor capture is often impervious to conscious awareness. The present study used event-related brain potentials to examine how such oculomotor errors are detected, evaluated, and compensated for and whether awareness of an error played a role at any of these stages of processing. The results show that the early processes of error detection and correction (as represented by the error-related negativity and the parietal N1) are not directly affected by subjective awareness of making an error. Instead, they seem to be modulated by the degree of temporal overlap between the programming of the correct and erroneous saccade. We found that only a later component (the error-related positivity [Pe]) is modulated by awareness of making an erroneous eye movement. We propose that awareness of oculomotor capture primarily depends on this later process.

2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.


2005 ◽  
Vol 19 (4) ◽  
pp. 244-255 ◽  
Author(s):  
Milan Brázdil ◽  
Robert Roman ◽  
Pavel Daniel ◽  
Ivan Rektor

Abstract: Performance monitoring represents a critical executive function of the human brain. In an effort to identify its anatomical and physiological aspects, a negative component of event-related potentials (ERPs), which occurs only on incorrect trials, has been used in the extensive investigation of error processing. This component has been termed “error-negativity” (Ne) or error-related negativity (ERN) and has been interpreted as a correlate of error detection. The aim of the present intracerebral ERP study was to contribute knowledge of the sources of the Ne/ERN, with a particular focus on the involvement of a frontomedian wall (FMW) in the genesis of this negativity. Seven patients with intractable epilepsy participated in the study. Depth electrodes were implanted to localize the seizure origin prior to surgical treatment. A total of 574 sites in the frontal, temporal, and parietal lobes were investigated. A simple Go/NoGo task was performed and EEG epochs with correct and erroneous motor responses were averaged independently using the response as the trigger. Ne/ERN was generated in multiple cortical structures, with the most consistent involvement being that of the FMW structures. Ne/ERN generators were revealed there in both the rostral and caudal anterior cingulate cortex (ACC), but also in the pre-SMA and in the parts of the medial frontal gyrus adjacent to the ACC. Different timing of activations between the rostral and caudal anterior cingulate Ne/ERN sources was observed in this study. Other neural sources of the Ne/ERN were found in the dorsolateral prefrontal cortex, in the orbitofrontal cortex, in the lateral temporal neocortex, and in one isolated case in the supramarginal gyrus. Our findings support the key role of the FMW in the genesis of Ne/ERN. At the same time, our findings suggest a different functional significance for the rostral and caudal ACC involvement in error processing. In addition to the FMW, the other prefrontal cortical sites, the lateral temporal neocortex, and the supramarginal gyrus seem to represent integral components of the brain's error monitoring system.


2021 ◽  
Author(s):  
Peter Egeto

Event-related potentials of performance monitoring, including N2 (conflict monitoring), error-related negativity and error positivity (ERN and Pe; error monitoring), and P3 (inhibition) have been studied. However, conflict monitoring lacks a behavioural measure, and the functional significance of ERN, Pe, and P3 are debated. To address these issues, a behavioural measure of conflict monitoring was tested by subtracting the reaction time (RT) of a simple from a choice RT task to isolate conflict monitoring; the functions of error monitoring and inhibition were examined. The RT difference correlated with the N2 area (longer conflict monitoring related to a larger N2). ERN and Pe areas were negatively and positively correlated with errors, respectively. P3 magnitude and onset were correlated with an inhibition index. The new behavioural measure provides an accessible way to study conflict monitoring. Theories of conflict monitoring for ERN, error awareness for Pe, and inhibition for P3 were replicated and extended.


2005 ◽  
Vol 19 (4) ◽  
pp. 263-269 ◽  
Author(s):  
Ann-Christine Ehlis ◽  
Martin J. Herrmann ◽  
Achim Bernhard ◽  
Andreas J. Fallgatter

Abstract: In the present study, a modified version of the Eriksen Flanker Task has been used to study event-related potentials (ERPs) elicited by correct responses, response errors, and invalid negative response feedback following correct button presses (“PC-error trials”). Conventional error potentials (error related negativity [ERN/Ne]; error-positivity [Pe]) were observed after incorrect button presses but not following negative response feedback in PC-error trials. Furthermore, a late positive deflection occurred specifically after PC-errors (Late positivity [PL]), which might reflect a conscious processing of these unexpected events. The results imply some restrictions for the notion that the ERN/Ne reflects the activity of a general and “generic” neural error-detection system in the human brain. Furthermore, the existence of an “event-detection system” is indicated, which might be involved in the processing of events that violate learned expectations.


1997 ◽  
Vol 9 (6) ◽  
pp. 788-798 ◽  
Author(s):  
Wolfgang H. R. Miltner ◽  
Christoph H. Braun ◽  
Michael G. H. Coles

We examined scalp-recorded event-related potentials following feedback stimuli in a time-estimation task. Six hundred msec after indicating the end of a 1 sec interval, subjects received a visual, auditory, or somatosensory stimulus that indicated whether the interval they had produced was correct. Following feedback indicating incorrect performance, a negative deflection occurred, whose characteristics corresponded closely to those of the component (the error-related negativity) that accompanies errors in choice reaction time tasks. Furthermore, equivalent dipole analysis suggested that, for all three modalities, the distribution of the scalp potential was consistent with a local source in the anterior cingulate cortex or a more distributed source in the supplementary motor areas. These loci correspond closely to those described previously for the error-related negativity. We conclude that the error-related negativity is the manifestation of the activity of a “generic” neural system involved in error detection.


2005 ◽  
Vol 19 (3) ◽  
pp. 216-231 ◽  
Author(s):  
Albertus A. Wijers ◽  
Maarten A.S. Boksem

Abstract. We recorded event-related potentials in an illusory conjunction task, in which subjects were cued on each trial to search for a particular colored letter in a subsequently presented test array, consisting of three different letters in three different colors. In a proportion of trials the target letter was present and in other trials none of the relevant features were present. In still other trials one of the features (color or letter identity) were present or both features were present but not combined in the same display element. When relevant features were present this resulted in an early posterior selection negativity (SN) and a frontal selection positivity (FSP). When a target was presented, this resulted in a FSP that was enhanced after 250 ms as compared to when both relevant features were present but not combined in the same display element. This suggests that this effect reflects an extra process of attending to both features bound to the same object. There were no differences between the ERPs in feature error and conjunction error trials, contrary to the idea that these two types of errors are due to different (perceptual and attentional) mechanisms. The P300 in conjunction error trials was much reduced relative to the P300 in correct target detection trials. A similar, error-related negativity-like component was visible in the response-locked averages in correct target detection trials, in feature error trials, and in conjunction error trials. Dipole modeling of this component resulted in a source in a deep medial-frontal location. These results suggested that this type of task induces a high level of response conflict, in which decision-related processes may play a major role.


2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2015 ◽  
Vol 114 (5) ◽  
pp. 2672-2681 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux ◽  
Antonia H. Groneberg ◽  
Doreen B. Pfau ◽  
Rolf-Detlef Treede ◽  
...  

Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


Sign in / Sign up

Export Citation Format

Share Document