scholarly journals Hearing Shapes Our Perception of Time: Temporal Discrimination of Tactile Stimuli in Deaf People

2012 ◽  
Vol 24 (2) ◽  
pp. 276-286 ◽  
Author(s):  
Nadia Bolognini ◽  
Carlo Cecchetto ◽  
Carlo Geraci ◽  
Angelo Maravita ◽  
Alvaro Pascual-Leone ◽  
...  

Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.

1997 ◽  
Vol 78 (5) ◽  
pp. 2296-2308 ◽  
Author(s):  
Stephen E. Sherman ◽  
Lei Luo ◽  
Jonathan O. Dostrovsky

Sherman, Stephen E., Lei Luo, and Jonathan O. Dostrovsky. Altered receptive fields and sensory modalities of rat VPL thalamic neurons during spinal strychnine-induced allodynia. J. Neurophysiol. 78: 2296–2308, 1997. Allodynia is an unpleasant sequela of neural injury or neuropathy that is characterized by the inappropriate perception of light tactile stimuli as pain. This condition may be modeled experimentally in animals by the intrathecal (i.t.) administration of strychnine, a glycine receptor antagonist. Thus after i.t. strychnine, otherwise innocuous tactile stimuli evoke behavioral and autonomic responses that normally are elicited only by noxious stimuli. The current study was undertaken to determine how i.t. strychnine alters the spinal processing of somatosensory input by examining the responses of neurons in the ventroposterolateral thalamic nucleus. Extracellular, single-unit recordings were conducted in the lateral thalamus of 19 urethan-anaesthetized, male, Wistar rats (342 ± 44 g; mean ± SD). Receptive fields and responses to noxious and innocuous cutaneous stimuli were determined for 19 units (1 per animal) before and immediately after i.t. strychnine (40 μg). Eighteen of the animals developed allodynia as evidenced by the ability of otherwise innocuous brush or air jet stimuli to evoke cardiovascular and/or motor reflexes. All (3) of the nociceptive-specific units became responsive to brush stimulation after i.t. strychnine, and one became sensitive to brushing over an expanded receptive field. Expansion of the receptive field, as determined by brush stimulation, also was exhibited by all of the low-threshold mechanoreceptive units (14) and wide dynamic range units (2) after i.t. strychnine. The use of air jet stimuli at fixed cutaneous sites also provided evidence of receptive field expansion, because significant unit responses to air jet developed at 13 cutaneous sites (on 7 animals) where an identical stimulus was ineffective in evoking a unit response before i.t. strychnine. However, the magnitude of the unit response to cutaneous air jet stimulation was not changed at sites that already had been sensitive to this stimulus before i.t. strychnine. The onset of allodynia corresponded with the onset of the altered unit responses (i.e., lowered threshold/receptive field expansion) for the majority of animals (9), but the altered unit response either terminated concurrently with symptoms of allodynia (6) or, more frequently, outlasted the symptoms of allodynia (10) as the effects of strychnine declined. The present results demonstrate that the direct, receptor-mediated actions of strychnine on the spinal processing of sensory information are reflected by changes in the receptive fields and response properties of nociceptive and nonnociceptive thalamic neurons. These changes are consistent with the involvement of thalamocortical mechanisms in the expression of strychnine-induced allodynia and, moreover, suggest that i.t. strychnine also produces changes in innocuous tactile sensation.


2017 ◽  
Vol 118 (4) ◽  
pp. 2311-2317 ◽  
Author(s):  
Giorgio Leodori ◽  
Alessandra Formica ◽  
Xiaoying Zhu ◽  
Antonella Conte ◽  
Daniele Belvisi ◽  
...  

The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the task. The ThirdDT is a new method to measure somatosensory temporal discrimination and a possible index of inhibitory activity at the S1 level.


2020 ◽  
Author(s):  
Farzaneh Darki ◽  
James Rankin

In perceptual rivalry, ambiguous sensory information leads to dynamic changes in the perceptual interpretation of fixed stimuli. This phenomenon occurs when participants receive sensory stimuli that support two or more distinct interpretations; this results in spontaneous alternations between possible perceptual interpretations. Perceptual rivalry has been widely studied across different sensory modalities including vision, audition and, to a limited extent, in the tactile domain. Common features of perceptual rivalry across various ambiguous visual and auditory paradigms characterise the randomness of switching times and their dependence on input strength manipulations (Levelt’s propositions). It is still unclear whether general characteristics of perceptual rivalry are preserved with tactile stimuli. This study aims to introduce a simple tactile stimulus capable of generating perceptual rivalry and explores whether general features of perceptual rivalry from other modalities extend to the tactile domain.


Author(s):  
Farzaneh Darki ◽  
James Rankin

AbstractIn perceptual rivalry, ambiguous sensory information leads to dynamic changes in the perceptual interpretation of fixed stimuli. This phenomenon occurs when participants receive sensory stimuli that support two or more distinct interpretations; this results in spontaneous alternations between possible perceptual interpretations. Perceptual rivalry has been widely studied across different sensory modalities including vision, audition, and to a limited extent, in the tactile domain. Common features of perceptual rivalry across various ambiguous visual and auditory paradigms characterize the randomness of switching times and their dependence on input strength manipulations (Levelt’s propositions). It is still unclear whether the general characteristics of perceptual rivalry are preserved with tactile stimuli. This study aims to introduce a simple tactile stimulus capable of generating perceptual rivalry and explores whether general features of perceptual rivalry from other modalities extend to the tactile domain. Our results confirm that Levelt’s proposition II extends to tactile bistability, and that the stochastic characteristics of irregular perceptual alternations agree with non-tactile modalities. An analysis of correlations between subsequent perceptual phases reveals a significant positive correlation at lag 1 (as found in visual bistability), and a negative correlation for lag 2 (in contrast with visual bistability).


2002 ◽  
Vol 88 (1) ◽  
pp. 540-543 ◽  
Author(s):  
John J. Foxe ◽  
Glenn R. Wylie ◽  
Antigona Martinez ◽  
Charles E. Schroeder ◽  
Daniel C. Javitt ◽  
...  

Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory.


1994 ◽  
Vol 663 (1) ◽  
pp. 38-50 ◽  
Author(s):  
Selene Cansino ◽  
Samuel J. Williamson ◽  
Daniel Karron

2011 ◽  
Vol 105 (2) ◽  
pp. 674-686 ◽  
Author(s):  
Tetsuo Kida ◽  
Koji Inui ◽  
Emi Tanaka ◽  
Ryusuke Kakigi

Numerous studies have demonstrated effects of spatial attention within single sensory modalities (within-modal spatial attention) and the effect of directing attention to one sense compared with the other senses (intermodal attention) on cortical neuronal activity. Furthermore, recent studies have been revealing that the effects of spatial attention directed to a certain location in a certain sense spread to the other senses at the same location in space (cross-modal spatial attention). The present study used magnetoencephalography to examine the temporal dynamics of the effects of within-modal and cross-modal spatial and intermodal attention on cortical processes responsive to visual stimuli. Visual or tactile stimuli were randomly presented on the left or right side at a random interstimulus interval and subjects directed attention to the left or right when vision or touch was a task-relevant modality. Sensor-space analysis showed that a response around the occipitotemporal region at around 150 ms after visual stimulation was significantly enhanced by within-modal, cross-modal spatial, and intermodal attention. A later response over the right frontal region at around 200 ms was enhanced by within-modal spatial and intermodal attention, but not by cross-modal spatial attention. These effects were estimated to originate from the occipitotemporal and lateral frontal areas, respectively. Thus the results suggest different spatiotemporal dynamics of neural representations of cross-modal attention and intermodal or within-modal attention.


2002 ◽  
Vol 28 (3) ◽  
pp. 599-609 ◽  
Author(s):  
Robert A Sweet ◽  
Joseph N Pierri ◽  
Sungyoung Auh ◽  
Allan R Sampson ◽  
David A Lewis

Sign in / Sign up

Export Citation Format

Share Document