scholarly journals Turning the Face Inversion Effect on Its Head: Violated Expectations of Orientation, Lighting, and Gravity Enhance N170 Amplitudes

2021 ◽  
Vol 33 (2) ◽  
pp. 303-314
Author(s):  
Yasmin Allen-Davidian ◽  
Manuela Russo ◽  
Naohide Yamamoto ◽  
Jordy Kaufman ◽  
Alan J. Pegna ◽  
...  

Face inversion effects occur for both behavioral and electrophysiological responses when people view faces. In EEG, inverted faces are often reported to evoke an enhanced amplitude and delayed latency of the N170 ERP. This response has been attributed to the indexing of specialized face processing mechanisms within the brain. However, inspection of the literature revealed that, although N170 is consistently delayed to a variety of face representations, only photographed faces invoke enhanced N170 amplitudes upon inversion. This suggests that the increased N170 amplitudes to inverted faces may have other origins than the inversion of the face's structure. We hypothesize that the unique N170 amplitude response to inverted photographed faces stems from multiple expectation violations, over and above structural inversion. For instance, rotating an image of a face upside–down not only violates the expectation that faces appear upright but also lifelong priors about illumination and gravity. We recorded EEG while participants viewed face stimuli (upright vs. inverted), where the faces were illuminated from above versus below, and where the models were photographed upright versus hanging upside–down. The N170 amplitudes were found to be modulated by a complex interaction between orientation, lighting, and gravity factors, with the amplitudes largest when faces consistently violated all three expectations. These results confirm our hypothesis that face inversion effects on N170 amplitudes are driven by a violation of the viewer's expectations across several parameters that characterize faces, rather than a disruption in the configurational disposition of its features.

2019 ◽  
Author(s):  
Yasmin Allen-Davidian ◽  
Manuela Russo ◽  
Naohide Yamamoto ◽  
Jordy Kaufman ◽  
Alan J. Pegna ◽  
...  

Face Inversion Effects (FIEs) – differences in response to upside down faces compared to upright faces – occur for both behavioural and electrophysiological responses when people view face stimuli. In EEG, the inversion of a face is often reported to evoke an enhanced amplitude and delayed latency of the N170 event-related potential. This response has historically been attributed to the indexing of specialised face processing mechanisms within the brain. However, inspection of the literature revealed that while the N170 is consistently delayed to photographed, schematic, Mooney and line drawn face stimuli, only naturally photographed faces enhance the amplitude upon inversion. This raises the possibility that the increased N170 amplitudes to inverted faces may have other origins than the inversion of the face’s structural components. In line with previous research establishing the N170 as a prediction error signal, we hypothesise that the unique N170 amplitude response to inverted photographed faces stems from multiple expectation violations, over and above structural inversion. For instance, rotating an image of a face upside down not only violates the expectation that faces appear upright, but also lifelong priors that illumination comes from above and gravity pulls from below. To test this hypothesis, we recorded EEG whilst participants viewed face stimuli (upright versus inverted), where the faces were illuminated from above versus below, and where the models were photographed upright versus hanging upside down. The N170 amplitudes were found to be modulated by a complex interaction between orientation, lighting and gravity factors, with the amplitudes largest when faces consistently violated all three expectations and smallest when all these factors concurred with expectations. These results confirm our hypothesis that FIEs on N170 amplitudes are driven by a violation of the viewer’s expectations across several parameters that characterise faces, rather than a disruption in the configurational disposition of its features.


2013 ◽  
Vol 25 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Thomas W. James ◽  
Lindsay R. Arcurio ◽  
Jason M. Gold

The face inversion effect has been used as a basis for claims about the specialization of face-related perceptual and neural processes. One of these claims is that the fusiform face area (FFA) is the site of face-specific feature-based and/or configural/holistic processes that are responsible for producing the face inversion effect. However, the studies on which these claims were based almost exclusively used stimulus manipulations of whole faces. Here, we tested inversion effects using single, discrete features and combinations of multiple discrete features, in addition to whole faces, using both behavioral and fMRI measurements. In agreement with previous studies, we found behavioral inversion effects with whole faces and no inversion effects with a single eye stimulus or the two eyes in combination. However, we also found behavioral inversion effects with feature combination stimuli that included features in the top and bottom halves (eyes-mouth and eyes-nose-mouth). Activation in the FFA showed an inversion effect for the whole-face stimulus only, which did not match the behavioral pattern. Instead, a pattern of activation consistent with the behavior was found in the bilateral inferior frontal gyrus, which is a component of the extended face-preferring network. The results appear inconsistent with claims that the FFA is the site of face-specific feature-based and/or configural/holistic processes that are responsible for producing the face inversion effect. They are more consistent with claims that the FFA shows a stimulus preference for whole upright faces.


2005 ◽  
Vol 17 (8) ◽  
pp. 1316-1327 ◽  
Author(s):  
Marianne Latinus ◽  
Margot J. Taylor

The specialness of faces is seen in the face inversion effect, which disrupts the configural, but not the analytic, processing of faces. Mooney faces, which are processed holistically, allowed us to determine the contribution of holistic processing to the face inversion effect. As inverted Mooney faces are difficult to recognize as faces, we also included an intermediary training period for Mooney face recognition for half of the subjects. Early face-sensitive ERPs (N170 and P1) and P2 were measured. Behavioral data showed an increase in correct responses to inverted and upright Mooney faces after the learning phase for the experimental group. No effects were seen on P1. N170 latency did not vary with stimulus type before the intermediary phase, however, N170 amplitude was consistently larger for upright than inverted Mooney faces. After the intermediary exercise, N170 was delayed for inverted compared to upright Mooney faces. In contrast, for both groups of subjects P2 amplitude was larger for nonface stimuli, and P2 amplitude decreased after the intermediate task only for the subjects trained to recognize Mooney faces. As the usual inversion effect seen with photographic faces (delayed and larger N170) was not seen with Mooney faces, these data suggest that this effect on N170 is due to the recruitment of analytic processing. P2 reflected learning and a deeper processing of the stimuli that were not identifiable as faces.


2019 ◽  
Author(s):  
Inês Mares ◽  
Louise Ewing ◽  
Emily K. Farran ◽  
Fraser W Smith ◽  
Marie L Smith

AbstractRapidly and accurately processing information from faces is a critical human function that is known to improve with developmental age. Understanding the underlying drivers of this improvement remains a contentious question, with debate continuing as to the presence of early vs. late maturation of face-processing mechanisms. Recent behavioural evidence suggests an important ‘hallmark’ of expert face processing – the face inversion effect – is present in very young children, yet neural support for this remains unclear. To address this, we conducted a detailed investigation of the neural dynamics of face-selective processing in children spanning a range of ages (6 – 11 years) and adults. Uniquely, we applied multivariate pattern analysis (MVPA) to the electroencephalogram signal (EEG) to test for the presence of a distinct neural profile associated with canonical upright faces when compared both to other objects (houses) and to inverted faces. Results revealed robust discrimination profiles, at the individual level, of differentiated neural activity associated with broad face categorization and further with its expert processing, as indexed by the face inversion effect, from the youngest ages tested. This result is consistent with an early functional maturation of broad face processing mechanisms. Yet, clear quantitative differences between the response profile of children and adults is suggestive of age-related refinement of this system with developing face and general expertise. Standard ERP analysis also provides some support for qualitative differences in the neural response to inverted faces in children in contrast to adults. This neural profile is in line with recent behavioural studies that have reported impressively expert early face abilities during childhood, while also providing novel evidence of the ongoing neural specialisation between child and adulthood.


2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


Sign in / Sign up

Export Citation Format

Share Document