Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams

Author(s):  
Ji Won Kim ◽  
◽  
You Min Lee ◽  
Shawn Han ◽  
Kyeongtaek Kim
2020 ◽  
Author(s):  
César Capinha ◽  
Ana Ceia-Hasse ◽  
Andrew M. Kramer ◽  
Christiaan Meijer

AbstractTemporal data is ubiquitous in ecology and ecologists often face the challenge of accurately differentiating these data into predefined classes, such as biological entities or ecological states. The usual approach transforms the temporal data into static predictors of the classes. However, recent deep learning techniques can perform the classification using raw time series, eliminating subjective and resource-consuming data transformation steps, and potentially improving classification results. We present a general approach for time series classification that considers multiple deep learning algorithms and illustrate it with three case studies: i) insect species identification from wingbeat spectrograms; ii) species distribution modelling from climate time series and iii) the classification of phenological phases from continuous meteorological data. The deep learning approach delivered ecologically sensible and accurate classifications, proving its potential for wide applicability across subfields of ecology. We recommend deep learning as an alternative to techniques requiring the transformation of time series data.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


2021 ◽  
Vol 352 ◽  
pp. 109080
Author(s):  
Joram van Driel ◽  
Christian N.L. Olivers ◽  
Johannes J. Fahrenfort

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


1995 ◽  
Vol 115 (3) ◽  
pp. 354-360 ◽  
Author(s):  
Shigeaki Fukuda ◽  
Toshihisa Kosaka ◽  
Sigeru Omatsu

Sign in / Sign up

Export Citation Format

Share Document