scholarly journals Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

2020 ◽  
Vol 23 (5) ◽  
pp. 545-554
Author(s):  
Sang Yoon Min ◽  
Wook Oh
2016 ◽  
Vol 47 (4) ◽  
Author(s):  
Sadik & et al.

This study was conducted in experimental fields, Department of Horticulture, University of Bagdad, in Abu-Graib  during season 2011-2012 for jerusalum artichoke. This study was included the effect of dipping tubers in three concentrations of GA3(2.5,5,10g/l) (G1,G2,G3),as well as to control treatment (G0), and spraying nutrient solution Agro leaf A1 (8g/l), as well as to control treatment (A0). This study was made by using Factorial experiment (4*2) within the design RCBD with three replicates. Results could be summarized as follows: G3A0 increased field emergence (12.00 day), G2A0 increased percentage of germination (99.33%) and G2A1 increased number of branches (4.60 stem.plant-1) but the treatment G1A1gave highest rate for number of leaves, leaf area, guide of leaf area, dry weight of the vegetative parts and dry weight of 100gm tubers as(4495.10 leaf.plant-1, 2246.20 dsm2, 99.84, 922.40g, 24.00g.) respectively. The treatments gave significant differences quantity yield, so treatment G3A0 gave highest weight of the tubers as(45.55g.) but the treatment G3A1 gave highest number of the tubers as(68.00 tuber.plant-1 ) and highest yield of plant as (2890g/plant).


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 90
Author(s):  
Dong Kang ◽  
Hai Jeong ◽  
Yoo Park ◽  
Byoung Jeong

The effects of the quality and intensity of night interruption light (NIL) on the flowering and morphogenesis of kalanchoe (Kalanchoe blossfeldiana) ‘Lipstick’ and ‘Spain’ were investigated. Plants were raised in a closed-type plant factory under 250 μmol·m−2·s−1 PPFD white light emitting diodes (LEDs) with additional light treatments. These treatments were designated long day (LD, 16 h light, 8 h dark), short day (SD, 8 h light, 16 h dark), and SD with a 4 h night interruption (NI). The NIL was constructed from 10 μmol·m−2·s−1 or 20 μmol·m−2·s−1 PPFD blue (NI-B), red (NI-R), white (NI-W), or blue and white (NI-BW) LEDs. In ‘Spain’, the SPAD value, area and thickness of leaves and plant height increased in the NI treatment as compared to the SD treatment. In ‘Lipstick’, most morphogenetic characteristics in the NI treatment showed no significant difference to those in the SD treatment. For both cultivars, plants in SD were significantly shorter than those in other treatments. The flowering of Kalanchoe ‘Lipstick’ was not affected by the NIL quality, while Kalanchoe ‘Spain’ flowered when grown in SD and 10 μmol·m−2·s−1 PPFD NI-B. These results suggest that the NIL quality and intensity affect the morphogenesis and flowering of kalanchoe, and that different cultivars are affected differently. There is a need to further assess the effects of the NIL quality and intensity on the morphogenesis and flowering of short-day plants for practical NIL applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Na Lu ◽  
Michiko Takagaki ◽  
Wataru Yamori ◽  
Natsuko Kagawa

Perilla frutescens (Lamiaceae) is a dietary staple in Asia. It is an abundant source of flavonoids that are bioactively beneficial to human health and fitness. The current popularity of plant-based consumption is being driven by the healthful benefits of bioactive nutrition, and the concentration of bioactive agents found in raw plant materials is an important factor in the assessment of food quality. To test the feasibility of promoting flavonoid productivity in perilla plants via environmental treatment, plant factory technology was applied to perilla plant cultivation. Apigenin (AG) and luteolin (LT) are two of the most potent anticarcinogenic flavonoids in perilla, and these are also found in many vegetables and fruits. Quantitative analysis of AG and LT was conducted on plants cultivated under nine environmental forms of treatment imposed by three levels of light intensity (100, 200, and 300 µmol·m−2·s−1) combined with three levels of nutrient-solution concentration (1.0, 2.0, and 3.0 dS·m−1) for hydroculture. The contents of AG in green and red perilla plant were increased by high nutrient-solution levels under the same light intensity. In green perilla, the highest concentration of AG (8.50 µg·g−1) was obtained under treatment of the highest level of nutrient-solution (3.0 dS·m−1) and 200 µmol·m−2·s−1 of light intensity, whereas in red perilla, the highest concentration of AG (6.38 µg·g−1) was achieved from the highest levels of both of these forms of treatment (300 µmol·m−2·s−1 and 3.0 dS·m−1). The increase in AG content per plant between the lowest and the highest levels was recorded by 6.4-fold and 8.6-fold in green and red perilla, respectively. The behavior of LT concentration differed between green and red forms of perilla. LT concentration in red perilla was enhanced under nutrient deficiency (1.0 dS·m−1) and affected by light intensity. Different responses were observed in the accumulations of AG and LT in red and green perilla during treatments, and this phenomenon was discussed in terms of biosynthetic pathways that involve the expressions of phenylpropanoids and anthocyanins. The total yield of flavonoids (AG and LT) was improved with the optimization of those forms of treatment, with the best total yields: 33.9 mg·plant−1 in green Perilla; 10.0 mg·plant−1 in red perilla, and a 4.9-fold and a 5.4-fold increase was recorded in green and red perilla, respectively. This study revealed that flavone biosynthesis and accumulation in perilla plants could be optimized via environmental control technologies, and this approach could be applicable to leafy vegetables with bioactive nutrition to produce a stable industrial supply of high flavonoid content.


2013 ◽  
Vol 22 (4) ◽  
pp. 291-297 ◽  
Author(s):  
Mi-Kyung Cha ◽  
◽  
Ju-Hyun Cho ◽  
Young-Yeol Cho

Sign in / Sign up

Export Citation Format

Share Document