New Directions of Legal Reform for Renewable Energy in Europe: From Single-Plant Support to Whole-of-System Approaches

Climate Law ◽  
2016 ◽  
Vol 6 (3-4) ◽  
pp. 353-372
Author(s):  
Anne Kallies

As the proportion of renewable energy in the electricity system increases, a new suite of barriers becomes apparent. These include the unsuitability of traditional network configurations for often remote renewable resources, and the need to develop a diverse range of renewable-energy sources to ensure electricity system stability and security. Substantial legal reform will be necessary to develop an electricity system that can accommodate high volumes of renewable energy. This paper analyses recent legal reforms for renewable energy in the United Kingdom and Germany to illuminate a regulatory shift away from single-plant support to whole-of-system approaches to electricity system development. Regulatory attention has shifted to reform regulatory frameworks for electricity networks to be more accommodating of renewable energy, rather than simply providing financial support for renewable sources. These changes have been supported by a high-level commitment to develop an electricity system that is both efficient and sustainable.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Li Yu ◽  
Ke Meng ◽  
Wang Zhang ◽  
Yuchen Zhang

The national electricity market (NEM) of Australia is reforming via the rapid uptake of variable renewable energy (VRE) integration concurrent with the retirement of conventional synchronous generation. System strength has emerged as a prominent challenge and constraint to power system stability and ongoing grid connection of VRE such as solar and wind. In order to facilitate decarbonization pathways, Australia is the first country to evolve system strength and inertia frameworks and assessment methods to accommodate energy transition barriers, and other parts of the world are now beginning to follow the same approach. With the evolvement of the system strength framework as a new trending strategy to break the transition barriers raised by renewable energy project development and grid connection studies, this paper provides a high-level overview of system strength, covering such fundamental principles as its definition, attributes, and manifestations, as well as industry commentary, cutting-edge technologies and works currently underway for the delivery of a secure and reliable electricity system with the rapid integration of inverter-based resources (IBRs) in the NEM grid. The intent of this study is to provide a comprehensive reference on the engineering practices of the system strength challenge along with complementary technical, regulatory, and industry perspectives.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Author(s):  
Jishu Mary Gomez ◽  
Prabhakar Karthikeyan Shanmugam

Background & Objectives: The global power system is in a state of continuous evolution, incorporating more and more renewable energy systems. The converter-based systems are void of inherent inertia control behavior and are unable to curb minor frequency deviations. The traditional power system, on the other hand, is made up majorly of synchronous generators that have their inertia and governor response for frequency control. For improved inertial and primary frequency response, the existing frequency control methods need to be modified and an additional power reserve is to be maintained mandatorily for this purpose. Energy self-sufficient renewable distributed generator systems can be made possible through optimum active power control techniques. Also, when major global blackouts were analyzed for causes, solutions, and precautions, load shedding techniques were found to be a useful tool to prevent frequency collapse due to power imbalances. The pre-existing load shedding techniques were designed for traditional power systems and were tuned to eliminate low inertia generators as the first step to system stability restoration. To incorporate emerging energy possibilities, the changes in the mixed power system must be addressed and new frequency control capabilities of these systems must be researched. Discussion: In this paper, the power reserve control schemes that enable frequency regulation in the widely incorporated solar photovoltaic and wind turbine generating systems are discussed. Techniques for Under Frequency Load Shedding (UFLS) that can be effectively implemented in renewable energy enabled micro-grid environment for frequency regulation are also briefly discussed. The paper intends to study frequency control schemes and technologies that promote the development of self- sustaining micro-grids. Conclusion: The area of renewable energy research is fast emerging with immense scope for future developments. The comprehensive literature study confirms the possibilities of frequency and inertia response enhancement through optimum energy conservation and control of distributed energy systems.


Green ◽  
2014 ◽  
Vol 4 (1-6) ◽  
Author(s):  
Arndt Neuhaus ◽  
Frank-Detlef Drake ◽  
Gunnar Hoffmann ◽  
Friedrich Schulte

AbstractThe transition to a sustainable electricity supply from renewable energy sources (RES) imposes major technical and economic challenges upon market players and the legislator. In particular the rapid growth of volatile wind power and photovoltaic generation requires a high level of flexibility of the entire electricity system, therefore major investments in infrastructures are needed to maintain system stability. This raises the important question about the role that central large-scale energy storage and/or small-scale distributed storage (“energy storage at home”) are going to play in the energy transition. Economic analyses show that the importance of energy storage is going to be rather limited in the medium term. Especially competing options like intelligent grid extension and flexible operation of power plants are expected to remain favourable. Nonetheless additional storage capacities are required if the share of RES substantially exceeds 50% in the long term. Due to the fundamental significance of energy storages, R&D considers a broad variety of types each suitable for a specific class of application.


Author(s):  
Roxanne Garland ◽  
Sara Dillich ◽  
Eric Miller ◽  
Kristine Babick ◽  
Kenneth Weil

The goal of the US Department of Energy (DOE) hydrogen production portfolio is to research and develop low-cost, highly efficient and environmentally friendly production technologies based on diverse, domestic resources. The DOE Hydrogen Program integrates basic and applied research, as well as technology development and demonstration, to adequately address a diverse range of technologies and feedstocks. The program encompasses a broad spectrum of coordinated activities within the DOE Offices of Energy Efficiency and Renewable Energy (EERE), Nuclear Energy (NE), Fossil Energy (FE), and Science (SC). Hydrogen can be produced in small, medium, and larger scale facilities, with small-scale distributed facilities producing from 100 to 1,500 kilograms (kg) of hydrogen per day at fueling stations, and medium-scale (also known as semi-central or city-gate) facilities producing from 1,500 to 50,000 kg per day on the outskirts of cities. The largest central facilities would produce more than 50,000 kg of hydrogen per day. Specific technologies currently under program development for distributed hydrogen production include bio-derived renewable liquids and water electrolysis. Centralized renewable production pathways under development include water electrolysis integrated with renewable power (e.g., wind, solar, hydroelectric, or geothermal), biomass gasification, solar-driven high-temperature thermochemical water splitting, direct photoelectrochemical water splitting, and biological production methods using algal/bacterial processes. To facilitate commercialization of hydrogen production via these various technology pathways in the near and long terms, a “Hydrogen Production Roadmap” has been developed which identifies the key challenges and high-priority research and development needs associated with each technology. The aim is to foster research that will lead to hydrogen production with near-zero net greenhouse gas emissions, using renewable energy sources, nuclear energy, and/or coal (with carbon capture and storage). This paper describes the research and development needs and activities by various DOE offices to address the key challenges in the portfolio of hydrogen production technologies.


Sign in / Sign up

Export Citation Format

Share Document