scholarly journals An Overview of System Strength Challenges in Australia’s National Electricity Market Grid

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Li Yu ◽  
Ke Meng ◽  
Wang Zhang ◽  
Yuchen Zhang

The national electricity market (NEM) of Australia is reforming via the rapid uptake of variable renewable energy (VRE) integration concurrent with the retirement of conventional synchronous generation. System strength has emerged as a prominent challenge and constraint to power system stability and ongoing grid connection of VRE such as solar and wind. In order to facilitate decarbonization pathways, Australia is the first country to evolve system strength and inertia frameworks and assessment methods to accommodate energy transition barriers, and other parts of the world are now beginning to follow the same approach. With the evolvement of the system strength framework as a new trending strategy to break the transition barriers raised by renewable energy project development and grid connection studies, this paper provides a high-level overview of system strength, covering such fundamental principles as its definition, attributes, and manifestations, as well as industry commentary, cutting-edge technologies and works currently underway for the delivery of a secure and reliable electricity system with the rapid integration of inverter-based resources (IBRs) in the NEM grid. The intent of this study is to provide a comprehensive reference on the engineering practices of the system strength challenge along with complementary technical, regulatory, and industry perspectives.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6076
Author(s):  
Lazar Šćekić ◽  
Saša Mujović ◽  
Vladan Radulović

Besides many benefits deriving from the energy transition process, it is not uncommon for modern power systems to be faced with difficulties in their operation. The issues are dominantly related to the non-dispatchable nature of renewable energy sources (RES) and the mismatching between electricity generation and load demand. As a consequence of a constant peak load growth, this problem is particularly pronounced during the daily peak hours. Therefore, it is of great importance to conduct all necessary activities within the system in order to preserve the system stability and continuity of operation. Energy storage systems have been recognized as a major facilitator of renewable energy, by providing additional operational flexibility. Since pumped hydroelectric energy storage (PHES) accounts for almost 97% of the world’s storage capacity, in this paper, we have investigated the benefits of using pumped-storage hydropower in modern power systems characterized by high penetration of RES and the liberalized electricity market. A novel operation algorithm has been developed which finds the balance between providing additional flexibility by alleviating the peak load and obtaining financial revenue to justify the high investment costs associated with PHES. The algorithm has been tested for the daily and monthly operation of the Tonstad PHES in the dynamic environment of the Norwegian power system.


Climate Law ◽  
2016 ◽  
Vol 6 (3-4) ◽  
pp. 353-372
Author(s):  
Anne Kallies

As the proportion of renewable energy in the electricity system increases, a new suite of barriers becomes apparent. These include the unsuitability of traditional network configurations for often remote renewable resources, and the need to develop a diverse range of renewable-energy sources to ensure electricity system stability and security. Substantial legal reform will be necessary to develop an electricity system that can accommodate high volumes of renewable energy. This paper analyses recent legal reforms for renewable energy in the United Kingdom and Germany to illuminate a regulatory shift away from single-plant support to whole-of-system approaches to electricity system development. Regulatory attention has shifted to reform regulatory frameworks for electricity networks to be more accommodating of renewable energy, rather than simply providing financial support for renewable sources. These changes have been supported by a high-level commitment to develop an electricity system that is both efficient and sustainable.


Author(s):  
Lee Godden

Australia is in energy transition despite a national policy supportive of fossil fuels. Regional and remote areas, however, remain dependent on fossil fuels, including diesel. Renewable energy is becoming accessible for some regional communities, due to renewable energy incentives. This chapter considers the energy transition in Australia through the energy justice lens. It analyses the distribution of benefits and burdens of energy activities upon remote Indigenous communities, and examines energy price impacts and consumer protection reforms in liberalized electricity markets in the south. The analysis examines how social justice needs to inform the energy transition, also recognising that energy injustice cannot be separated from other social ills, such as poverty and discrimination based on factors including class, race, gender, or indigeneity. It concludes that there are significant protections emerging for energy consumers in the national electricity market, but an inequitable distribution of energy benefits and burdens in remote Aboriginal communities.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


Green ◽  
2014 ◽  
Vol 4 (1-6) ◽  
Author(s):  
Arndt Neuhaus ◽  
Frank-Detlef Drake ◽  
Gunnar Hoffmann ◽  
Friedrich Schulte

AbstractThe transition to a sustainable electricity supply from renewable energy sources (RES) imposes major technical and economic challenges upon market players and the legislator. In particular the rapid growth of volatile wind power and photovoltaic generation requires a high level of flexibility of the entire electricity system, therefore major investments in infrastructures are needed to maintain system stability. This raises the important question about the role that central large-scale energy storage and/or small-scale distributed storage (“energy storage at home”) are going to play in the energy transition. Economic analyses show that the importance of energy storage is going to be rather limited in the medium term. Especially competing options like intelligent grid extension and flexible operation of power plants are expected to remain favourable. Nonetheless additional storage capacities are required if the share of RES substantially exceeds 50% in the long term. Due to the fundamental significance of energy storages, R&D considers a broad variety of types each suitable for a specific class of application.


2005 ◽  
Vol 16 (5) ◽  
pp. 803-813
Author(s):  
Roger Gill ◽  
Harry Andrews

In Tasmania, the island state of Australia, the generator, Hydro Tasmania, is pushing technical, environmental and business boundaries in its plans to integrate a relatively high proportion (up to 20 percent) of large wind generators into its current complex mix of large and small hydropower plants. Its plans include projects to increase the efficiency of its older hydropower equipment as it prepares to supply much needed peaking capacity to the market in southern Australia via the groundbreaking Basslink undersea cable, which is due for completion in November 2005. Taken as a package these developments are creating a globally significant reference site for renewable energy systems. The paper will describe what is happening, and more importantly what is underpinning the developments, including: the harnessing of Tasmania's world-class wind resource, where recently constructed 1.75 MW wind turbines are achieving capacity factors of over 45 percent – some of the best productivity in the world today; the application of leading environmental science measures to ensure the sustainability of both the new wind farm developments and the transformation of the hydropower system to meet peak capacity demands; the relevance of the existing large hydropower storages that can operate in synergy with the wind resource; the contribution of Australia's renewable energy certificate scheme, which is effectively doubling the value of new renewable energy developments compared with existing generation sources; the application of the latest technology in hydropower turbines, combined with power system expertise from the world's leading manufacturers, to increase the efficiency of older hydropower generators, thereby more effectively harnessing the existing environmental footprint; and the transformation of Hydro Tasmania's business into a significant supplier and trader of premium value peak energy into the sophisticated Australian National Electricity Market.


Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Kirsten Halsnæs ◽  
Lisa Bay ◽  
Per Skougaard Kaspersen ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen

To limit global warming to less than 2 °C requires a low-carbon transition with very large shares of renewables. Options such as wind, solar and hydro are influenced by both short and longer-term weather and climate variability. While still subject to natural and anthropogenic climate forcing and fluctuating energy prices, water reservoirs can dually operate as storage and production facilities and serve to balance the more volatile production capacity from solar and wind. This paper assesses the dynamics and demands of the hydro-dominated Nordic electricity system and market and identifies untapped potential for climate services based on a combination of literature-based research, documented stakeholder needs and data sources on historical and future conditions. A critical need for both improving the appropriateness and reliability of existing climate services and for developing new tailored solutions for a broader group of stakeholders from the renewable energy sector in the Nordics is observed. The quantification of uncertainties related to short-term weather forecasts and longer-term climate predictions is also found to be important for minimizing the financial risk in relation to systems management and to overall investments in renewable energy.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1910
Author(s):  
Jan Schwidtal ◽  
Marco Agostini ◽  
Fabio Bignucolo ◽  
Massimiliano Coppo ◽  
Patrizia Garengo ◽  
...  

In light of the advancing energy transition and an increasing amount of intermittent renewable energy to be integrated, flexibility from distributed energy resources will be key. In this paper, the Italian UVAM (Unità Virtuali Abilitate Miste, i.e., virtually aggregated mixed units) project, one of the biggest pilots in Europe to serve this purpose, is critically reviewed and mapped after two years of operation. The pilot is analyzed on a global level as well as the individual participant level. Based on the extensive analysis of actual market data, different strategies of participating companies to obtain capacity in accordance with the pilot project’s design are identified. Furthermore, the specific bidding strategies of individual participating units on the balancing market are outlined. Alongside this, the overall pilot project’s market integration, in terms of offered and accepted bids, is depicted. The thorough data analysis, therefore, serves as an input and fundamental building block for future electricity market modeling. Comprehending specific data from the coronavirus disease 2019 (COVID-19) pandemic, provides insights for future high renewable-energy scenarios. Based on the analysis findings, valuable deliverables are devised for both policy-makers and decision-makers who aim to leverage the flexibility potential of distributed resources.


2021 ◽  
Vol 13 (22) ◽  
pp. 12494
Author(s):  
Dorian Frieden ◽  
Andreas Tuerk ◽  
Ana Rita Antunes ◽  
Vasilakis Athanasios ◽  
Alexandros-Georgios Chronis ◽  
...  

To accelerate the energy transition, the EU “Clean Energy for all Europeans” package aims to strengthen the involvement of end consumers in the energy market. To this end, together with so-called “active consumers” and provisions for individual and collective renewable energy self-consumption, two types of energy communities were introduced. The EU framework, however, leaves many details of the transposition process to the national level. The corresponding directives were supposed to be transposed by the end of December 2020 (recast Electricity Market Directive, defining active consumers and citizen energy communities) and by the end of June 2021 (Renewable Energy Directive, defining renewables self-consumption and renewable energy communities). In this paper, we critically discuss major developments of the transposition, including questions of the general distinction of the different concepts, governance and ownership, physical expansion, administrative barriers and the overall integration of energy communities into the energy system. The analysis builds on country case studies as well as on previous work by the authors on the status of the transposition process throughout the EU. The paper shows that the national approaches differ greatly and are at very different stages. While basic provisions are in place in most Member States to meet the fundamental EU requirements, the overall integration into the energy system and market is only partly addressed. This concerns, for instance, the analysis of system impacts of energy communities and measures that would allow and support energy system-friendly behaviour. In addition, several practical hurdles need to be overcome. These often relate to administrative requirements such as complex registration and licensing procedures, the need for the involvement of several institutions, or difficult procedures for access to relevant data. The paper concludes that discussed barriers will need to be carefully addressed if the high expectations for the role of energy communities are to be met.


Sign in / Sign up

Export Citation Format

Share Document