The U.S. Department of Energy’s Research and Development Portfolio of Hydrogen Production Technologies

Author(s):  
Roxanne Garland ◽  
Sara Dillich ◽  
Eric Miller ◽  
Kristine Babick ◽  
Kenneth Weil

The goal of the US Department of Energy (DOE) hydrogen production portfolio is to research and develop low-cost, highly efficient and environmentally friendly production technologies based on diverse, domestic resources. The DOE Hydrogen Program integrates basic and applied research, as well as technology development and demonstration, to adequately address a diverse range of technologies and feedstocks. The program encompasses a broad spectrum of coordinated activities within the DOE Offices of Energy Efficiency and Renewable Energy (EERE), Nuclear Energy (NE), Fossil Energy (FE), and Science (SC). Hydrogen can be produced in small, medium, and larger scale facilities, with small-scale distributed facilities producing from 100 to 1,500 kilograms (kg) of hydrogen per day at fueling stations, and medium-scale (also known as semi-central or city-gate) facilities producing from 1,500 to 50,000 kg per day on the outskirts of cities. The largest central facilities would produce more than 50,000 kg of hydrogen per day. Specific technologies currently under program development for distributed hydrogen production include bio-derived renewable liquids and water electrolysis. Centralized renewable production pathways under development include water electrolysis integrated with renewable power (e.g., wind, solar, hydroelectric, or geothermal), biomass gasification, solar-driven high-temperature thermochemical water splitting, direct photoelectrochemical water splitting, and biological production methods using algal/bacterial processes. To facilitate commercialization of hydrogen production via these various technology pathways in the near and long terms, a “Hydrogen Production Roadmap” has been developed which identifies the key challenges and high-priority research and development needs associated with each technology. The aim is to foster research that will lead to hydrogen production with near-zero net greenhouse gas emissions, using renewable energy sources, nuclear energy, and/or coal (with carbon capture and storage). This paper describes the research and development needs and activities by various DOE offices to address the key challenges in the portfolio of hydrogen production technologies.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5347 ◽  
Author(s):  
Andrea Pietra ◽  
Marco Gianni ◽  
Nicola Zuliani ◽  
Stefano Malabotti ◽  
Rodolfo Taccani

Storing renewable energy in chemicals, like hydrogen, can bring various benefits like high energy density, seasonal storability, possible cost reduction of the final product, and the potential to let renewable power penetrate other markets and to overcome their intermittent availability. In the last year’s production of this gas from renewable energy sources via electrolysis has grown its reputation as one feasible solution to satisfy future zero-emission energy demand. To extend the exploitation of Renewable Energy Source (RES), small-scale conversion plants seem to be an interesting option. In view of a possible widespread adoption of these types of plants, the authors intend to present the experimental characterization of a small-scale hydrogen production and storage plant. The considered experimental plant is based on an alkaline electrolyser and an air-driven hydrogen compression and storage system. The results show that the hydrogen production-specific consumption is, on average, 77 kWh/kgH2. The hydrogen compressor energy requirement is, on average, 15 kWh/kgH2 (data referred to the driving compressed air). The value is higher than data found in literature (4.4–9.3 kWh/kgH2), but the difference can be attributed to the small size of the considered compressor and the choice to limit the compression stages.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4180 ◽  
Author(s):  
Bartosz Ceran

Different hydrogen production scenarios need to be compared in regard to multiple, and often distinct aspects. It is well known that hydrogen production technologies based on environmentally-friendly renewable energy sources have higher values of the economic indicators than methods based on fossil fuels. Therefore, how should this decision criterion (environmental) prevail over the other types of decision criteria (technical and economic) to make a scenario where hydrogen production only uses renewable energy sources the most attractive option for a decision-maker? This article presents the results of a multi-variant comparative analysis of scenarios to annually produce one million tons of pure hydrogen (99.999%) via electrolysis in Poland. The compared variants were found to differ in terms of electricity sources feeding the electrolyzers. The research demonstrated that the scenario where hydrogen production uses energy from photovoltaics only becomes the best option for the environmental criterion weighting value at 61%. Taking the aging effect of photovoltaic installation (PV) panels and electrolyzers after 10 years of operation into account, the limit value of the environmental criterion rises to 63%. The carried out analyses may serve as the basis for the creation of systems supporting the development of clean and green hydrogen production technologies.


2021 ◽  
Vol 2021 (1) ◽  
pp. 45-51
Author(s):  
N.P. Ivanenko ◽  
◽  
P.V. Tarasenko ◽  

To ensure the balance reliability of regimes of UES functioning, it was necessary to apply restrictions on generation from renewable energy sources (RES). In this regard, a number of amendments was made in 2020 to the Law of Ukraine "On the Electricity Market" dated April 13, 2017 No. 2019-VIII, which provide for reduction of the rates of the "green" tariff for renewable energy projects. CJSC NEC "Ukrenergo" predicts limitation of electricity production from renewable sources against the background of their growing capacity and falling consumption – up to 1 billion kW∙h. The total volume of electricity production from renewable energy sources in 2019 was about 4.5 billion kW∙h. One of the most efficient ways to use excessive electricity is producing hydrogen. Hydrogen has been successfully used as a raw material for many years. The total estimated value of the hydrogen feedstock market is $ 115 billion, and it is expected only to grow, reaching $ 155 billion by 2022. Hydrogen is widely used at present in various industries and sectors. It should be noted separately that the use of hydrogen instead of natural gas does not lead to increasing greenhouse gas emissions and favors the decarbonization of economy. In addition, the by-product of electrolysis is purified oxygen, which is currently relevant. The cost of hydrogen generated with the use of renewable electricity is typically $ 2.5–6.6 / kg of hydrogen. The most well-known technological options for producing hydrogen from RES are water electrolysis and steam reforming of biomethane / biogas with or without carbon capture and use / storage. The purpose of this paper was to estimate the weighted average cost of hydrogen in Ukraine at the expense of RES electricity, in particular, produced by a wind power plant with using water electrolysis. We developed an algorithm for calculating the weighted average cost of hydrogen production using wind power plants for the conditions of Ukraine, taking into account the determination of installed capacities of the battery, electrolyzer, and distiller. According to the calculation results, the weighted average cost of hydrogen production was about US $ 5.1 / kg of hydrogen. Keywords: hydrogen production, renewable energy sources, wind farm, weighted average cost. mathematical model, storage, electrolyzer


2020 ◽  
Vol 3 (2) ◽  
pp. p49
Author(s):  
Rafiq Mulla ◽  
Charles W. Dunnill

Hydrogen, a zero-emission fuel and the universal energy vector, can be easily produced from many different energy sources. It is a storable, transportable product that can be used on demand to overcome supply and demand imbalances. As of today, most of the hydrogen produced comes from natural gas; the production process itself is in fact not so pollution free. As the world is looking for a low carbon future, researchers have therefore been looking for more sustainable, environmentally friendly pathways of hydrogen production by using renewable energy sources such as solar and wind. Among the different methods, water electrolysis is a conventional and promising method of hydrogen production if renewable energy sources are to be employed in the process. Lots of progress has been made over the past few years in extending the use of hydrogen in different sectors. This perspective article briefly covers the recent developments in the hydrogen fuel-based projects and technologies and provides a description of the advantages of employing renewable energy sources for sustainable hydrogen production.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 810
Author(s):  
Mohd Fadhzir Ahmad Kamaroddin ◽  
Nordin Sabli ◽  
Tuan Amran Tuan Abdullah ◽  
Shamsul Izhar Siajam ◽  
Luqman Chuah Abdullah ◽  
...  

Hydrogen is a zero-carbon footprint energy source with high energy density that could be the basis of future energy systems. Membrane-based water electrolysis is one means by which to produce high-purity and sustainable hydrogen. It is important that the scientific community focus on developing electrolytic hydrogen systems which match available energy sources. In this review, various types of water splitting technologies, and membrane selection for electrolyzers, are discussed. We highlight the basic principles, recent studies, and achievements in membrane-based electrolysis for hydrogen production. Previously, the NafionTM membrane was the gold standard for PEM electrolyzers, but today, cheaper and more effective membranes are favored. In this paper, CuCl–HCl electrolysis and its operating parameters are summarized. Additionally, a summary is presented of hydrogen production by water splitting, including a discussion of the advantages, disadvantages, and efficiencies of the relevant technologies. Nonetheless, the development of cost-effective and efficient hydrogen production technologies requires a significant amount of study, especially in terms of optimizing the operation parameters affecting the hydrogen output. Therefore, herein we address the challenges, prospects, and future trends in this field of research, and make critical suggestions regarding the implementation of comprehensive membrane-based electrolytic systems.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


2017 ◽  
Vol 7 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Ernesto Amores ◽  
Jesús Rodríguez ◽  
José Oviedo ◽  
Antonio de Lucas-Consuegra

AbstractAlkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.


Sign in / Sign up

Export Citation Format

Share Document