Structure of Stem and Cambial Variant in Spatholobus Roxburgii (Leguminosae)

IAWA Journal ◽  
1993 ◽  
Vol 14 (2) ◽  
pp. 191-204 ◽  
Author(s):  
M.N.B. Nair

The stern of Spatholobus roxburghii, a tropicalliana, has alternating layers of xylem and phloem as a result of formation and activity of successive cambia. Successive cambial rings are developed by dedifferentiation of groups of parenchyma cells outside the discontinuous band of sclereid-fibres. The sclereid- fibre band is formed by the development of sclereids between the primary bark fibres. Each successive cambium first produces a layer of sclereid-fibres which separates the vascular tissue produced by one cambial ring from the other. After secondary growth, the epidermis is replaced by periderm. In the older stern phelloderm contributes to the formation of new cambiallayers. Secondary phloem has sieve tube members; companion cells, phloem parenchyma, phloem fibres and secretory cells. The wood shows a tendency towards ring-porosity only in the first xylem layer. The subsequent layers are diffuseporous. The vessels are wide and narrow. Perforated ray cells or radial vessels are frequent in the wood and probably help in vertical conduction by interconnecting vessel endings. In this scandent species parenchyma cells are abundant. It is inferred that they help the vessel segments to remain undamaged when the woody stern twists around supports.

IAWA Journal ◽  
1990 ◽  
Vol 11 (4) ◽  
pp. 379-391 ◽  
Author(s):  
M. N. B. Nair ◽  
H. Y. Mohan Ram

The wood of Dalbergia paniculata is unique as it consists of concentric layers of broad xylem, alternating with bands of narrow phloem. This anomaly results from the periodic formation of successive cambia in the secondary phloem. Some phloem parenchyma cells dedifferentiate to form a discontinuous ring of cambium. Such parenchyma cells have higher succinate dehydrogenase activity than the neighbouring cells of secondary phloem. The newly differentiated cambial layer functions bidirectionally, and its products give rise to xylem internally and phloem externally. The phloem along with cambium present internal to the newly formed xylem becomes included.The wood is diffuse-porous and the intervessel pits are vestured. The phloem has welldifferentiated sieve tube members and companion cells.


1970 ◽  
Vol 48 (2) ◽  
pp. 341-359 ◽  
Author(s):  
Lalit M. Srivastava

The origin of sieve elements and parenchyma cells in the secondary phloem of Austrobaileya was studied by use of serial cross sections stained with tannic acid – ferric chloride and lacmoid. In three important respects, Austrobaileya phloem recalls gymnospermous features: it has sieve cells rather than sieve-tube members; a significant proportion of sieve elements and companion cells arise independently of each other; and sieve areas occur between sieve elements and companion cells ontogenetically unrelated to each other. The angiospermous feature includes origin of most sieve elements and parenchyma, including companion cells, after divisions in phloic initials. In these instances companion cells show a closer ontogenetic relationship to sieve elements than do other parenchyma cells. The combination of gymnospermous and angiospermous features makes phloem of Austrobaileya unique when compared to that of all those species that have been investigated in detail. It is further suggested that the term albuminous cells is inappropriate and should be replaced by companion cells but that the ontogenetic relationship implicit in the definition of companion cells is too restrictive and should be abandoned.


IAWA Journal ◽  
2000 ◽  
Vol 21 (4) ◽  
pp. 417-424 ◽  
Author(s):  
Kishore S. Rajput ◽  
K.S. Rao

Secondary growth in Achyranthes aspera, Alternanthera polygamous, A. pungens, A. sessilis, and A. triandra was achieved by the development of a cambial variant resulting in successive rings of xylem and phloem. Each new cambium was developed at a distance about two to three cells external to the phloem produced by the previous cambium. The development of phloem was not synchronous in the species studied. Phloem development started either simultaneously with xylem or after the formation of a few xylem derivatives. In Achyranthes, xylem production started first followed by the development of phloem. Phloem mother cells differentiated into sieve tube elements, companion cells and axial parenchyma. Xylem was storied and exclusively composed of axial elements. Radial elements were absent in all the xylem rings of the stem. Vessels were angular and mostly solitary, but radial and tangential multiples were also observed occasionally. Xylem fibres were nonseptate and nucleated. Development of phloem and the rayless nature of the xylem is discussed.


IAWA Journal ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Pablo A. Cabanillas ◽  
Marcelo R. Pace ◽  
Veronica Angyalossy

Stem ontogeny and structure of two neotropical twining vines of the genus Callaeum are described. Secondary growth in Callaeum begins with a typical regular cambium that gradually becomes lobed as a result of variation in xylem and phloem production rates in certain portions of the stem aligned with stem orthostichies. As development progresses, lignified ray cells of the initially formed secondary xylem detach on one side from the adjacent tissues, forming a natural fracture that induces the proliferation of both ray and axial nonlignified parenchyma. At the same time, parenchyma proliferation takes place around the pith margin and generates a ring of radially arranged parenchyma cells. The parenchyma generated in this process (here termed disruptive parenchyma) keeps dividing throughout stem development. As growth continues, the parenchyma finally cleaves the lignified axial parts of the vascular system into several isolated fragments of different sizes. Each fragment consists of xylem, phloem and vascular cambium and is immersed in a ground matrix of disruptive parenchyma. The cambium present in each fragment divides anticlinally to almost encircle each entire fragment and maintains its regular activity by producing xylem to the centre of the fragment and phloem to the periphery. Additionally, new cambia arise within the disruptive parenchyma and produce xylem and phloem in various polarities, such as xylem to the inside and phloem to the outside of the stem, or perpendicularly to the original cambium. Unlike the very distinctive stem anatomical architecture resulting from this cambial variant in Callaeum, its secondary xylem and phloem exhibit features typical of lianas. These features include very wide conducting cells, abundant axial parenchyma, high and heterocellular rays and gelatinous fibres.


1965 ◽  
Vol 13 (2) ◽  
pp. 185
Author(s):  
MC Wark

The companion cells of the secondary phloem of Pisum contain all the organelles characteristic of cells possessing an active metabolism. The cytoplasm of the companion cells shows little change during ontogeny. Complex plasmodesmata connect the sieve elements and companion cells. These are the only connections observed between the sieve elements and other phloem cells. New wall structures of the companion cells are described. These structures are here tentatively called trabeculae; they intrude into the cytoplasm, but never completely cross the cell. The trabeculae alter in appearance at the time when the sieve element nucleus and tonoplast disappear. The phloem parenchyma cells are large vacuolated cells wider in diameter but shorter in length than the sieve elements. They contain all the organelles found in normal photosynthetic tissue. The cytoplasm of the phloem parenchyma shows little change during ontogeny. Plasmodesmata of well-developed pit fields connect the phloem parenchyma with the companion cells. The phloem parenchyma does not communicate with the sieve elements.


1966 ◽  
Vol 14 (3) ◽  
pp. 269 ◽  
Author(s):  
AN Rao

The series of events, and the anatomical changes connected with them, leading to the fusion of aerial roots in Ficus globosa Blume are described. The initial contact between two aerial roots is estabiished by the formation and fusion of epidermai hairs. Secondary growth increases the size of the roots, and consequently the cortices of the two adjacent roots approach one another and become compressed. The cortical tissues thin out in the central region of the compressed zone, but fuse marginally and remain intact. In both roots the ray cells near the contact area become highly meristematic; by active division they produce many parenchyma cells that extend towards each other and finally merge to establish a continuous parenchymatous zone between the steles of the two roots. The cortical tissues, secondary phloem, and vascular cambium in both roots are interrupted by the formation of this new tissue. Later some of the parenchyma cells below the fused regions of the cortex redifferentiate into vascular cambium and extend laterally, joining the pre-existing, interrupted cambia of the two roots. Thus a continuous ring of vascular cambium is reorganized that gives rise to more secondary xylem and phloem. Cork cambium differentiates in the subepidermal layers to form a thick periderm with a smooth surface, so that the fused roots appear externally as a single root. Certain important points of the present study are discussed with reference to previous work.


IAWA Journal ◽  
1984 ◽  
Vol 5 (1) ◽  
pp. 13-43 ◽  
Author(s):  
Katherine Esau ◽  
Vernon I. Cheadle

The secondary phloem of nine species in five genera of Winteraceae was examined with regard to features that could serve for taxonomic and phylogenetic evaluation of the family. The species examined were as follows: Bubbia pauciflora, B. semecarpoides, Drimys lanceolata, D. winteri, Exospermum stipitatum, Pseudo wintera axillaris, Zygogynum baillonii, Z. bicolor, and Z. vinkii. The nine species showed the following common characteristics: 1) origin from nonstoried vascular cambium with long fusiform initials; 2) ray system consisting of high multiseriate and high uniseriate rays; 3) occurrence of secondary partitioning in the differentiating phloem so that the sieve elements are much shorter than the tracheids; 4) lack of sharp differentiation between lateral sieve areas and those of the sieve plates; 5) predominance of compound sieve plates; 6) short companion cells, often single in a given sieve element; 7) phloem parenchyma cells in strands; 8) lack of specialised fibres (bast fibres) in the secondary phloem; 9) presence of nondispersing protein body in the sieve element protoplast. Features numbered 1, 2, 4-6 are considered to be indications of low evolutionary level. The significance of the other three features (3, 7-9) requires further evaluation. Among these three is the secondary partitioning the occurrence of which seems to imply that in some taxa the well known sequence of evolutionary shortening of cambial initials and their derivatives may be accelerated on the phloem side.


2014 ◽  
Vol 69 (1) ◽  
pp. 11-20
Author(s):  
Sławomir Janakowski ◽  
Władysław Golinowski

The sclerification process in bark tissues of common fir (<em>Abies alba</em> Mill.) has been described. The sclerification begins in 3 years old stems. Sclereids differentiate from cortical parenchyma cells and from secondary phloem parenchyma cells that do not contain phenolic deposits. The first single sclereids are formed at the interface of the cortex and nonfunctional phloem. Hereafter, a continuous layer of them is formed. Later, new sclereid layers are formed successively in nonfunctional secondary phloem and cortex. The consecutive layers are separated tangentially by phloem parenchyma cells, that accumulate large amounts of phenolic substances, and by compressed phloem cells. Laterally they are separated by phloem rays that except of some dislocations are continuous. Structural net of the cortical phloem ray cells and phloem parenchyma delineates the areas where the formations of sclereid layers occurs in nonfunctional secondary phloem. Older cortex contains more sclereid layers and the time period of their formation extends continuously.


Author(s):  
Patrick Echlin ◽  
Thomas Hayes ◽  
Clifford Lai ◽  
Greg Hook

Studies (1—4) have shown that it is possible to distinguish different stages of phloem tissue differentiation in the developing roots of Lemna minor by examination in the transmission, scanning, and optical microscopes. A disorganized meristem, immediately behind the root-cap, gives rise to the vascular tissue, which consists of single central xylem element surrounded by a ring of phloem parenchyma cells. This ring of cells is first seen at the 4-5 cell stage, but increases to as many as 11 cells by repeated radial anticlinal divisions. At some point, usually at or shortly after the 8 cell stage, two phloem parenchyma cells located opposite each other on the ring of cells, undergo an unsynchronized, periclinal division to give rise to the sieve element and companion cell. Because of the limited number of cells involved, this developmental sequence offers a relatively simple system in which some of the factors underlying cell division and differentiation may be investigated, including the distribution of diffusible low atomic weight elements within individual cells of the phloem tissue.


IAWA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Roger Moya

Abstract The lianas in the family Sapindaceae are known for their unique secondary growth which differs from climbing species in other plant families in terms of their cambial variants. The present study deals with the stem anatomy of self-supporting and lianescent habit, development of phloem wedges, the ontogeny of cambial variants and structure of the secondary xylem in the stems of Serjania mexicana (L.) Willd. Thick stems (15–20 mm) were characterized by the presence of distinct phloem wedges and tangentially wide neo-formed cambial cylinders. As the stem diameter increases, there is a proportional increase in the number of phloem wedges and neo-formed vascular cylinders. The parenchymatous (pericyclic) cells external to phloem wedges that are located on the inner margin of the pericyclic fibres undergo dedifferentiation, become meristematic and form small segments of cambial cylinders. These cambia extend tangentially into wide and large segments of neoformations. Structurally, the secondary xylem and phloem of the neo-formed vascular cylinders remain similar to the derivatives produced by the regular vascular cambium. The secondary xylem is composed of vessels (wide and narrow), fibres, axial and ray parenchyma cells. The occurrence of perforated ray cells is a common feature in both regular and variant xylem.


Sign in / Sign up

Export Citation Format

Share Document