Fine structure of the phloem of Pisum sativum. II. The companion cell and phloem parenchyma

1965 ◽  
Vol 13 (2) ◽  
pp. 185
Author(s):  
MC Wark

The companion cells of the secondary phloem of Pisum contain all the organelles characteristic of cells possessing an active metabolism. The cytoplasm of the companion cells shows little change during ontogeny. Complex plasmodesmata connect the sieve elements and companion cells. These are the only connections observed between the sieve elements and other phloem cells. New wall structures of the companion cells are described. These structures are here tentatively called trabeculae; they intrude into the cytoplasm, but never completely cross the cell. The trabeculae alter in appearance at the time when the sieve element nucleus and tonoplast disappear. The phloem parenchyma cells are large vacuolated cells wider in diameter but shorter in length than the sieve elements. They contain all the organelles found in normal photosynthetic tissue. The cytoplasm of the phloem parenchyma shows little change during ontogeny. Plasmodesmata of well-developed pit fields connect the phloem parenchyma with the companion cells. The phloem parenchyma does not communicate with the sieve elements.

1968 ◽  
Vol 16 (1) ◽  
pp. 37 ◽  
Author(s):  
SY Zee ◽  
TC Chambers

The morphogenesis of the sieve elements, companion cells, and phloem parenchyma in the region between 0.5 and 2.0 mm from the actively growing root apex of seedlings of Pisum sativum L. cv. Telephone is described. The overall developmental pattern is essentially similar to that already described for the secondary phloem of the young stem internode of the same species, although differences in the development of some organelles do exist between the two types of phloem. The development of the sieve element is traced from the earliest stages of cross wall formation up to the morphologically mature stages. Very few sieve elements reach morphological maturity in this region. The possibility that the functional translocatory sieve elements are those at earlier stages of development is discussed.


IAWA Journal ◽  
1984 ◽  
Vol 5 (1) ◽  
pp. 13-43 ◽  
Author(s):  
Katherine Esau ◽  
Vernon I. Cheadle

The secondary phloem of nine species in five genera of Winteraceae was examined with regard to features that could serve for taxonomic and phylogenetic evaluation of the family. The species examined were as follows: Bubbia pauciflora, B. semecarpoides, Drimys lanceolata, D. winteri, Exospermum stipitatum, Pseudo wintera axillaris, Zygogynum baillonii, Z. bicolor, and Z. vinkii. The nine species showed the following common characteristics: 1) origin from nonstoried vascular cambium with long fusiform initials; 2) ray system consisting of high multiseriate and high uniseriate rays; 3) occurrence of secondary partitioning in the differentiating phloem so that the sieve elements are much shorter than the tracheids; 4) lack of sharp differentiation between lateral sieve areas and those of the sieve plates; 5) predominance of compound sieve plates; 6) short companion cells, often single in a given sieve element; 7) phloem parenchyma cells in strands; 8) lack of specialised fibres (bast fibres) in the secondary phloem; 9) presence of nondispersing protein body in the sieve element protoplast. Features numbered 1, 2, 4-6 are considered to be indications of low evolutionary level. The significance of the other three features (3, 7-9) requires further evaluation. Among these three is the secondary partitioning the occurrence of which seems to imply that in some taxa the well known sequence of evolutionary shortening of cambial initials and their derivatives may be accelerated on the phloem side.


1970 ◽  
Vol 48 (2) ◽  
pp. 341-359 ◽  
Author(s):  
Lalit M. Srivastava

The origin of sieve elements and parenchyma cells in the secondary phloem of Austrobaileya was studied by use of serial cross sections stained with tannic acid – ferric chloride and lacmoid. In three important respects, Austrobaileya phloem recalls gymnospermous features: it has sieve cells rather than sieve-tube members; a significant proportion of sieve elements and companion cells arise independently of each other; and sieve areas occur between sieve elements and companion cells ontogenetically unrelated to each other. The angiospermous feature includes origin of most sieve elements and parenchyma, including companion cells, after divisions in phloic initials. In these instances companion cells show a closer ontogenetic relationship to sieve elements than do other parenchyma cells. The combination of gymnospermous and angiospermous features makes phloem of Austrobaileya unique when compared to that of all those species that have been investigated in detail. It is further suggested that the term albuminous cells is inappropriate and should be replaced by companion cells but that the ontogenetic relationship implicit in the definition of companion cells is too restrictive and should be abandoned.


1985 ◽  
Vol 63 (12) ◽  
pp. 2295-2304 ◽  
Author(s):  
John W. Oross ◽  
William J. Lucas

The vascular anatomy and phloem ultrastructure of the sugar beet petiole were studied in an attempt to evaluate the potential of petiolar phloem anastomoses to accommodate lateral movement of translocates across this structure. Clearings revealed that six of the eight interveinal regions between the nine major, axially oriented veins were connected by many anastomoses. The two interveinal areas characterized by the fewest anastomoses were located near the margin of the petiole. It was concluded that lateral translocation via anastomoses would be most efficient in the central part of the petiole. A light microscope study of the structure of the junction between anastomosing and continuous veins revealed that the sieve elements of each of the merging veins were separated from each other, for distances of up to 6 mm beyond the point of initial contact, by phloem parenchyma cells. The presence of phloem parenchyma cells in this position, and between the clusters of sieve elements that occur across the phloem of the large bundles, was taken as an indication that the parenchyma cells may have an important role in lateral translocation. An ultrastructural study of the petiolar phloem revealed that the phloem parenchyma and companion cells could be easily distinguished on the basis of the structure of the chloroplasts, dictyosomes, and endoplasmic reticulum. Microfilament bundles and spine-coated tubules and (or) vesicles were uniquely present in the parenchyma cells. The ultrastructure of the phloem parenchyma cells is discussed relative to their possible role in mediating the movement of sugars through the anastomoses.


1968 ◽  
Vol 16 (3) ◽  
pp. 419 ◽  
Author(s):  
S Zee

The pattern of distribution and differentiation of the primary phloem, the cambium, and the secondary phloem, and the exact pattern of division of the initial cell and its derivatives have been studied in the epicotyl of pea plants by using electron microscopy. Three divisional patterns of the initial cell, in giving rise to the phloem cells, are recognized. The initial cell first divides periclinally to give rise to a transitional cell. This transitional cell then divides further (periclinally and/or anticlinally) to give rise to three sequences of phloem derivatives: (1) phloem parenchyma cells, (2) a companion cell and a sieve cell, and (3) a companion cell, a sieve cell, and a phloem parenchyma cell. The derived cells can all easily be distinguished from each other either by their position in the vascular bundle at low magnification or by the different types of plastids present in them. The general pattern of differentiation of the cytoplasm and the formation of the sieve plate and the sieve pores of the sieve element are essentially similar in the primary and the secondary phloem. However, the sieve element of the secondary phloem, unlike that of the primary phloem, possesses in its cytoplasm three kinds of inclusion bodies - an amorphous form, a "crystalline" form, and a tubular form; these are described and their nature discussed.


1989 ◽  
Vol 67 (12) ◽  
pp. 3608-3617 ◽  
Author(s):  
Deborah D. Fisher ◽  
Jennifer Thorsch ◽  
Katherine Esau

A survey of 68 species representing 28 genera in the family Boraginaceae was conducted at the ultrastructural level to determine presence of nuclear crystalloids in sieve elements and occurrence of crystalline structures in chloroplasts of phloem parenchyma cells. Nuclear crystalloids were identified in 55 of the species examined, and 25 of the species contained chloroplast crystals. The nuclear crystals were mainly composed of thin rods densely packed in parallel arrangement. Their sizes, shapes, and numbers varied, but they were basically prismatic or possibly cubical. During maturation, the sieve element nuclei disintegrated and the crystalloids were released into the cell lumen where they remained intact. Loosely arranged paracrystalline components associated with the dense nuclear crystalloids were found only in the genus Amsinckia. Crystalline inclusions in the parenchyma chloroplasts were made up of fibers loosely aligned in a herringbone pattern. The lability of the chloroplast crystals to the proteolytic enzyme, protease, was tested on 10 species, and only Onosma stellulatum Waldst. & Kit. chloroplast crystals were routinely digested. The high percentage of nuclear crystalloids found in this family suggests that these inclusions could be valuable as a systematic character. Key words: sieve elements, nuclear inclusions, plastid crystals, Boraginaceae.


IAWA Journal ◽  
1993 ◽  
Vol 14 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Liu Donghua ◽  
Gao Xinzeng

The anatomy of the secondary phloem of species belonging to four genera in Rosaceae is described. The three genera of the Maloideae studied are more or less similar in their phloem anatomy; tangential bands of fibresclereids alternate with bands of sieve elements, companion cells and parenchyma cells; superficially, the nonconducting and conducting phloem are not distinct from one another; sieve plates are compound and there are conspicuous sieve areas on lateral walls; rays are uniseriate and multiseriate, and homocellular. In the five species of Prunus (Prunoideae) studied, there are no fibre-sclereids in the conducting phloem, end walls bearing simple sieve plates are oblique to nearly horizontal; and rays are uniseriate and multiseriate, homocellular.


1975 ◽  
Vol 53 (23) ◽  
pp. 2745-2758 ◽  
Author(s):  
R. L. Peterson ◽  
E. C. Yeung

The primary phloem system in the rhizome of Hieracium floribundum has transfer cells that have developed from companion cells and parenchyma cells, which are adjacent to sieve elements. In both cell types changes occur in the cytoplasmic organelles at the time of wall ingrowth formation. Dicytosomes and polyribosomes become more numerous and 'boundary formations' and other multivesiculated structures appear. Few microtubules were found in the cytoplasm at this time. After the wall ingrowths become obvious, the transfer cells develop numerous mitochondria and an enlarged nucleus. The phloem transfer cells become vacuolated with age and the wall ingrowths become less numerous. This may be associated with a change in the translocation pattern in the phloem after the inception of vascular cambium activity. Parenchyma cells in the secondary phloem usually become rather vacuolated and develop few wall ingrowths.


IAWA Journal ◽  
1990 ◽  
Vol 11 (4) ◽  
pp. 379-391 ◽  
Author(s):  
M. N. B. Nair ◽  
H. Y. Mohan Ram

The wood of Dalbergia paniculata is unique as it consists of concentric layers of broad xylem, alternating with bands of narrow phloem. This anomaly results from the periodic formation of successive cambia in the secondary phloem. Some phloem parenchyma cells dedifferentiate to form a discontinuous ring of cambium. Such parenchyma cells have higher succinate dehydrogenase activity than the neighbouring cells of secondary phloem. The newly differentiated cambial layer functions bidirectionally, and its products give rise to xylem internally and phloem externally. The phloem along with cambium present internal to the newly formed xylem becomes included.The wood is diffuse-porous and the intervessel pits are vestured. The phloem has welldifferentiated sieve tube members and companion cells.


1969 ◽  
Vol 17 (2) ◽  
pp. 199 ◽  
Author(s):  
S Zee ◽  
TC Chambers

The divisional pattern of the cambium in giving rise to the secondary phloem and the associated changes in the fine structure of the cellular components from the initial to the morphologically mature sieve element have been described. The fine structure of the sieve element plastid is of particular interest in that it lacks a well-developed internal membrane system but contains two characteristic inclusion bodies, starch granules (which often break up into smaller units) and protein crystalloids (which invariably show subunits with either one- or two-directional periodicity). Electron microscope autoradiographs were made of cambial cells and their phloem derivatives in tissues exposed either to [3H]thymidine for 24 hr (followed by growth in the absence of tracer for 4 days) or to [3H]uridine for 2-12 hr without a further growth period. The [3H]thymidine labels were specifically lodged in the chromatin material of the cambial initials, the companion cells, the phloem parenchyma cells, and the young sieve elements. During sieve element maturation the [3H]thymidine label became less specifically associated with the chromatin material. The pattern of labelling of the [3H]uridine in addition to being associated with the nucleolus was also associated with the chromatin, the electron-lucent areas of the nucleus, and the cytoplasm of the young sieve element, the companion cell and the phloem parenchyma indicating that these cells were all active in RNA synthesis. In the sieve element the nucleolus disappeared at a very early stage of development. This was associated with a decrease in [3H]uridine incorporation into the nucleus. As the tonoplast of the sieve element disintegrated, [3H]uridine incorporation into both the nucleus and the cytoplasm stopped, which is interpreted as a cessation in RNA synthesis. At no stage in the development of the sieve element was [3H]uridine incorporated into the "slime" material.


Sign in / Sign up

Export Citation Format

Share Document