cambial variant
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

IAWA Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Roger Moya

Abstract The lianas in the family Sapindaceae are known for their unique secondary growth which differs from climbing species in other plant families in terms of their cambial variants. The present study deals with the stem anatomy of self-supporting and lianescent habit, development of phloem wedges, the ontogeny of cambial variants and structure of the secondary xylem in the stems of Serjania mexicana (L.) Willd. Thick stems (15–20 mm) were characterized by the presence of distinct phloem wedges and tangentially wide neo-formed cambial cylinders. As the stem diameter increases, there is a proportional increase in the number of phloem wedges and neo-formed vascular cylinders. The parenchymatous (pericyclic) cells external to phloem wedges that are located on the inner margin of the pericyclic fibres undergo dedifferentiation, become meristematic and form small segments of cambial cylinders. These cambia extend tangentially into wide and large segments of neoformations. Structurally, the secondary xylem and phloem of the neo-formed vascular cylinders remain similar to the derivatives produced by the regular vascular cambium. The secondary xylem is composed of vessels (wide and narrow), fibres, axial and ray parenchyma cells. The occurrence of perforated ray cells is a common feature in both regular and variant xylem.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248369
Author(s):  
Nathan A. Jud ◽  
Sarah E. Allen ◽  
Chris W. Nelson ◽  
Carolina L. Bastos ◽  
Joyce G. Chery

Paullinieae are a diverse group of tropical and subtropical climbing plants that belong to the soapberry family (Sapindaceae). The six genera in this tribe make up approximately one-quarter of the species in the family, but a sparse fossil record limits our understanding of their diversification. Here, we provide the first description of anatomically preserved fossils of Paullinieae and we re-evaluate other macrofossils that have been attributed to the tribe. We identified permineralized fossil roots in collections from the lower Miocene Cucaracha Formation where it was exposed along the Culebra Cut of the Panama Canal. We prepared the fossils using the cellulose acetate peel technique and compared the anatomy with that of extant Paullinieae. The fossil roots preserve a combination of characters found only in Paullinieae, including peripheral secondary vascular strands, vessel dimorphism, alternate intervessel pitting with coalescent apertures, heterocellular rays, and axial parenchyma strands of 2–4 cells, often with prismatic crystals. We also searched the paleontological literature for other occurrences of the tribe. We re-evaluated leaf fossils from western North America that have been assigned to extant genera in the tribe by comparing their morphology to herbarium specimens and cleared leaves. The fossil leaves that were assigned to Cardiospermum and Serjania from the Paleogene of western North America are likely Sapindaceae; however, they lack diagnostic characters necessary for inclusion in Paullinieae and should be excluded from those genera. Therefore, the fossils described here as Ampelorhiza heteroxylon gen. et sp. nov. are the oldest macrofossil evidence of Paullinieae. They provide direct evidence of the development of a vascular cambial variant associated with the climbing habit in Sapindaceae and provide strong evidence of the diversification of crown-group Paullinieae in the tropics by 18.5–19 million years ago.


IAWA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Yanã C. Rizzieri ◽  
Arno F.N. Brandes ◽  
Israel L. Cunha Neto ◽  
Genise V. Somner ◽  
Michaela J.N. Lima ◽  
...  

Abstract Sapindaceae lianas are remarkable for the diversity of cambial variants found in their stems. One of the family’s exclusive cambial variant is the divided vascular cylinder, which occurs in eight species of the genus Serjania. This cambial variant is marked by 5 peripheral vascular cylinders around a large pith. We performed a comparative developmental analysis, integrating traditional plant anatomy techniques with high-resolution X-ray micro-computed tomography to investigate the structure and development of the stems of three species with divided vascular cylinder. Our observations showed that the initial stages of stem development were similar to those described in the literature, however, on later developmental stages a central vascular cylinder appears in all species. The ontogeny of these stems are marked by three main processes: (i) dissection of vascular tissue from the peripheral vascular cylinders; (ii) development of new cambial arcs through the redifferentiation of pith cells; and (iii) recruitment of cambial cells from the inner portions of the vascular cambium of the peripheral vascular cylinders, forming a novel central vascular cylinder where the pith was, surrounded by five initial peripheral cylinders. As an ulterior developmental stage, some older stems also develop neoformations and connections between the different vascular cylinders. While our findings support previous descriptions of divided vascular cylinders, this is the first study illustrating the formation of the central vascular cylinder in this cambial variant. Our observations further corroborate that Serjania is the lineage with the highest and some of the most complex forms of cambial variants among all vascular plants.


IAWA Journal ◽  
2020 ◽  
pp. 1-14
Author(s):  
Kishore S. Rajput ◽  
Amit D. Gondaliya ◽  
Himansu Baijnath

Abstract Members of the Convolvulaceae are characterized by the climbing habit and occurrence of variant secondary growth. From a histological perspective, the genus Ipomoea L. is the most extensively studied, while other genera have been less studied. Here, stem anatomy of the least studied genus in the family, Hewittia Wight & Arn., represented by Hewittia malabarica (L.) Suresh was investigated using classical histological techniques. In both the samples collected from India and South Africa, stem thickness increased by developing different types of cambial variants such as: neo-formed vascular cylinders, parenchyma proliferation at the phloem wedges, ray-derived cambia from dilating phloem rays, internal cambium, intra- and interxylary phloem. Neo-formed vascular cylinders develop from the parenchyma cells external to the phloem as a meristemoid in thick stems and later in dilating ray cells. With the increase in stem diameter, cells of the phloem wedges showed proliferation by meristematic activity, which form a connection with the cortex by rupturing the primary tissue ring of eustele. Subsequently, development of cambium in phloem wedges and deposition of its derivatives increased the tangential width of rays. Mature thick stems (25–30 mm) give rise to a fissured stem. Intraxylary (internal) phloem development on the pith margin was observed from primary growth onwards and in thick stems secondary intraxylary phloem developed from the internal cambium. Internal cambium is functionally bidirectional and produces secondary xylem internally and secondary phloem externally. In all the samples, patches of unlignified parenchyma embedded within the secondary xylem dedifferentiate and mature into interxylary phloem with the increasing age. Development of cambial variant and structure of the secondary xylem is correlated with the functional significance of the climbing habit.


IAWA Journal ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Pablo A. Cabanillas ◽  
Marcelo R. Pace ◽  
Veronica Angyalossy

Stem ontogeny and structure of two neotropical twining vines of the genus Callaeum are described. Secondary growth in Callaeum begins with a typical regular cambium that gradually becomes lobed as a result of variation in xylem and phloem production rates in certain portions of the stem aligned with stem orthostichies. As development progresses, lignified ray cells of the initially formed secondary xylem detach on one side from the adjacent tissues, forming a natural fracture that induces the proliferation of both ray and axial nonlignified parenchyma. At the same time, parenchyma proliferation takes place around the pith margin and generates a ring of radially arranged parenchyma cells. The parenchyma generated in this process (here termed disruptive parenchyma) keeps dividing throughout stem development. As growth continues, the parenchyma finally cleaves the lignified axial parts of the vascular system into several isolated fragments of different sizes. Each fragment consists of xylem, phloem and vascular cambium and is immersed in a ground matrix of disruptive parenchyma. The cambium present in each fragment divides anticlinally to almost encircle each entire fragment and maintains its regular activity by producing xylem to the centre of the fragment and phloem to the periphery. Additionally, new cambia arise within the disruptive parenchyma and produce xylem and phloem in various polarities, such as xylem to the inside and phloem to the outside of the stem, or perpendicularly to the original cambium. Unlike the very distinctive stem anatomical architecture resulting from this cambial variant in Callaeum, its secondary xylem and phloem exhibit features typical of lianas. These features include very wide conducting cells, abundant axial parenchyma, high and heterocellular rays and gelatinous fibres.


2014 ◽  
Vol 2 (1) ◽  
pp. 144-153 ◽  
Author(s):  
M. Lucía Borniego ◽  
◽  
Pablo A. Cabanillas ◽  
Keyword(s):  

2009 ◽  
Vol 11 (5) ◽  
pp. 465-479 ◽  
Author(s):  
Marcelo R. Pace ◽  
Lúcia G. Lohmann ◽  
Veronica Angyalossy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document