Characterization of Paranasal Drug Delivery Devices Utilizing a Human Nasal Cast – Do In-Vitro Data Support Promises?.

Author(s):  
M Keller ◽  
A Kruner ◽  
U Schuschnig
2021 ◽  
Vol 7 (2) ◽  
pp. 605-608
Author(s):  
Robert Ott ◽  
Alper Ö Öner ◽  
Paul Hermann Bellé ◽  
Finja Borowski ◽  
Klaus-Peter Schmitz ◽  
...  

Abstract Mitral regurgitation (MR) is the second most frequent indication for heart valve surgery and catheter interventions. According to European and US-American guidelines, transcatheter mitral valve repair in general and transcatheter edge-to-edge repair (TEER) in particular may be considered as a treatment option for selected high-risk patients. However, the biomechanical impact of TEERdevices on the mitral valve (MV) has not yet been fully understood. To address this problem, a 3D-Fluid-Structure Interaction (FSI) framework utilizing non-linear Finite Element Analysis (FEA) for the MV apparatus and Smoothed Particle Hydrodynamics (SPH) for the pulsatile fluid flow was developed and validated against in vitro data. An artificial MV-model (MVM) with a prolapse in the A2-P2 region and a custom-made TEER device implanted in the A2-P2 region were used for the in vitro investigations. In accordance with ISO 5910, projected mitral orifice areas (PMOA), flow rates as well as atrial and ventricular pressures were measured under pulsatile flow conditions before and after TEER device implantation. For the FSI-model, the MVM geometry was reconstructed by means of microcomputed tomography in a quasi-stress-free configuration. Quasi-static tensile test data was utilized for the development of linear- and hyperelastic material models of the chordae tendineae and leaflets, respectively. The fluid flow was modelled assuming an incompressible, homogenous Newtonian behaviour. Time-varying in vitro transmitral pressure loading was applied as a boundary condition. In vitro investigations show that TEER device implantation in the A2-P2 region effectively reduces the regurgitation fraction (RF) from 55 % to 13 %. Moreover, the comparison of experimental and numerical data yields a deviation of 2.09 % for the RF and a deviation of 0.40 % and 6.47 % for the maximum and minimum PMOA, respectively. The developed FSI-framework is in good agreement with in vitro data and is therefore applicable for the characterization of the biomechanical impact of different TEER devices under pulsatile flow conditions.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


2021 ◽  
Vol 9 ◽  
pp. 2050313X2110349
Author(s):  
Brett D Edwards ◽  
Ranjani Somayaji ◽  
Dina Fisher ◽  
Justin C Chia

Mycobacterium elephantis was first described when isolated from an elephant that succumbed to lung abscess. However, despite this namesake, it is not associated with animals and has been described most often as a probable colonizer rather than pathogen in humans with chronic lung disease. In this report, we describe the first case of lymphocutaneous infection from M. elephantis, likely as a result of cutaneous inoculation with contaminated soil. This offers further evidence to its capabilities as a pathogen. We provide a review of the limited prior reports of M. elephantis and outline the available in vitro data on efficacy of various antimycobacterial agents.


2011 ◽  
Vol 40 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Brooke M. VandenBrink ◽  
Robert S. Foti ◽  
Dan A. Rock ◽  
Larry C. Wienkers ◽  
Jan L. Wahlstrom

1993 ◽  
Vol 13 (2_suppl) ◽  
pp. 367-371 ◽  
Author(s):  
Erich Keller

Staphylococci are the leading pathogens In continuous ambulatory peritoneal dialysis (CAPD)-related peritonitis. Vancomycin appears to be an outstanding antistaphylococcal drug because resistance to It Is nearly absent. The pharmacokinetics of vancomycin and clinical cure rates of peritonitis with different dosing guidelines have been studied extensively. Different dosing guidelines with IP or IV loading doses followed or not followed by IP maintenance doses are used successfully, despite the fact that some of the dosing schemes produce apparently suboptimal drug levels referring to In vitro data like the MIC value (minimum Inhibitory concentration). Alternatively, amlnoglycosldes, cephalosporlns, Isoxazolyl penicillins, and broad-spectrum penicillins combined with betalactamase Inhibitors may be used for the treatment of gram-positive peritonitis. For the above panicillins pharmacokinetic data are scarce, and clinical experience is limited. Rifampin has excellent Intracellular antistaphylococcal activity and should be used In combination with other antibiotics. Although pharmacokinetic data are lacking, rifampin dosages do not require adaptation to renal function or replacement therapy.


1998 ◽  
Vol 42 (1) ◽  
pp. 164-169 ◽  
Author(s):  
A. Nzila-Mounda ◽  
E. K. Mberu ◽  
C. H. Sibley ◽  
C. V. Plowe ◽  
P. A. Winstanley ◽  
...  

ABSTRACT Sixty-nine Kenyan Plasmodium falciparum field isolates were tested in vitro against pyrimethamine (PM), chlorcycloguanil (CCG), sulfadoxine (SD), and dapsone (DDS), and their dihydrofolate reductase (DHFR) genotypes were determined. The in vitro data show that CCG is more potent than PM and that DDS is more potent than SD. DHFR genotype is correlated with PM and CCG drug response. Isolates can be classified into three distinct groups based on their 50% inhibitory concentrations (IC50s) for PM and CCG (P< 0.01) and their DHFR genotypes. The first group consists of wild-type isolates with mean PM and CCG IC50s of 3.71 ± 6.94 and 0.24 ± 0.21 nM, respectively. The second group includes parasites which all have mutations at codon 108 alone or also at codons 51 or 59 and represents one homogeneous group for which 25- and 6-fold increases in PM and CCG IC50s, respectively, are observed. Parasites with mutations at codons 108, 51, and 59 (triple mutants) form a third distinct group for which nine- and eightfold increases in IC50s, respectively, of PM and CCG compared to the second group are observed. Surprisingly, there is a significant decrease (P < 0.01) of SD and DDS susceptibility in these triple mutants. Our data show that more than 92% of Kenyan field isolates have undergone at least one point mutation associated with a decrease in PM activity. These findings are of great concern because they may indicate imminent PM-SD failure, and there is no affordable antimalarial drug to replace PM-SD (Fansidar).


Sign in / Sign up

Export Citation Format

Share Document