drug delivery devices
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 64)

H-INDEX

38
(FIVE YEARS 5)

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Yuliya Dantsu ◽  
Ying Zhang ◽  
Wen Zhang

Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.


Author(s):  
Dennis Cherian ◽  
Samuel Lienemann ◽  
Tobias Abrahamsson ◽  
Nara Kim ◽  
Magnus Berggren ◽  
...  

Abstract Implantable electronically controlled drug delivery devices can provide precision theraputic treatments by highly spatiotemporally controlled delivery. Iontronic delivery devices rely on the movement of ions rather than liquid, and can therefore achieve electronically controlled precision delivery in a compact setting without disturbing the microenvironment within the tissue with fluid flow. For maximum precision, the delivery device needs to be closely integrated into the tissue, which is challenging due to the mechanical mismatch between the soft tissue and the harder devices. Here we address this challenge by developing a soft and stretchable iontronic delivery device. By formulating an ink based on an in-house synthesized hyperbranched polyelectrolyte, water dispersed polyurethane, and a thickening agent, a viscous ink is developed for stencil patterning of soft ion exchange membranes. We use this ink for developing soft and stretchable delivery devices, which are characterized both in the relaxed and stretched state. We find that their functionality is preserved up to 100 % strain, with small variations in resistance due to the strain. Finally, we develop a skin patch to demonstrate the outstanding conformability of the developed device. The presented technology is attractive for future soft implantable delivery devices, and the stretchable ion exchange membranes may also find applications within wearable energy devices.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5376
Author(s):  
Jonathan David López-Lugo ◽  
Reinher Pimentel-Domínguez ◽  
Jorge Alejandro Benítez-Martínez ◽  
Juan Hernández-Cordero ◽  
Juan Rodrigo Vélez-Cordero ◽  
...  

We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites’ photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.


2021 ◽  
Vol 11 (17) ◽  
pp. 8008
Author(s):  
Agnes Bußmann ◽  
Henry Leistner ◽  
Doris Zhou ◽  
Martin Wackerle ◽  
Yücel Congar ◽  
...  

Subcutaneous injection is crucial for the treatment of many diseases. Especially for regular or continuous injections, automated dosing is beneficial. However, existing devices are large, uncomfortable, visible under clothing, or interfere with physical activity. Thus, the development of small, energy efficient and reliable patch pumps or implantable systems is necessary and research on microelectromechanical system (MEMS) based drug delivery devices has gained increasing interest. However, the requirements of medical applications are challenging and especially the dosing precision and reliability of MEMS pumps are not yet sufficiently evaluated. To enable further miniaturization, we propose a precise 5 × 5 mm2 silicon micropump. Detailed experimental evaluation of ten pumps proves a backpressure capability with air of 12.5 ± 0.8 kPa, which indicates the ability to transport bubbles. The maximal water flow rate is 74 ± 6 µL/min and the pumps’ average blocking pressure is 51 kPa. The evaluation of the dosing precision for bolus deliveries with water and insulin shows a high repeatability of dosed package volumes. The pumps show a mean standard deviation of only 0.02 mg for 0.5 mg packages, and therefore, stay below the generally accepted 5% deviation, even for this extremely small amount. The high precision enables the combination with higher concentrated medication and is the foundation for the development of an extremely miniaturized patch pump.


2021 ◽  
Vol 12 (2) ◽  
pp. 34
Author(s):  
Maria Chiara Cristiano ◽  
Antonia Mancuso ◽  
Elena Giuliano ◽  
Donato Cosco ◽  
Donatella Paolino ◽  
...  

Ethosomes® have been proposed as potential intra-articular drug delivery devices, in order to obtain a longer residence time of the delivered drug in the knee joint. To this aim, the conventional composition and preparation method were modified. Ethosomes® were prepared by using a low ethanol concentration and carrying out a vesicle extrusion during the preparation. The modified composition did not affect the deformability of ethosomes®, a typical feature of this colloidal vesicular topical carrier. The maintenance of sufficient deformability bodes well for an effective ethosome® application in the treatment of joint pathologies because they should be able to go beyond the pores of the dense collagen II network. The investigated ethosomes® were inserted in a three-dimensional network of thermo-sensitive poloxamer gel (EtoGel) to improve the residence time in the joint. Rheological experiments evidenced that EtoGel could allow an easy intra-articular injection at room temperature and hence transform itself in gel form at body temperature into the joint. Furthermore, EtoGel seemed to be able to support the knee joint during walking and running. In vitro studies demonstrated that the amount of used ethanol did not affect the viability of human chondrocytes and nanocarriers were also able to suitably interact with cells.


Author(s):  
Rolf Bech Kjeldsen ◽  
Maja Nørgaard Kristensen ◽  
Carsten Gundlach ◽  
Lasse Højlund Eklund Thamdrup ◽  
Anette Müllertz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document