Cyclic Car Peptide Targets Pulmonary Vascular Endothelium and Enhances the Efficacy of Prostacyclin in Experimental Pulmonary Hypertension

Author(s):  
L.-M. Yung ◽  
P. Yang ◽  
T. Dinter ◽  
G. Bocobo ◽  
Z. Augur ◽  
...  
2013 ◽  
Vol 12 (3) ◽  
pp. 135-144 ◽  
Author(s):  
Erik R. Swenson

Hypoxic vasoconstriction in the lung is a unique and fundamental characteristic of the pulmonary circulation. It functions in health and disease states to better preserve ventilation-perfusion matching by diverting blood flow to better ventilated regions when local ventilation is compromised. As more areas of lung become hypoxic either with high altitude or global lung disease, then hypoxic pulmonary vasoconstriction (HPV) becomes less effective in ventilation-perfusion matching and can lead to pulmonary hypertension. HPV is intrinsic to the vascular smooth muscle and its mechanisms remain poorly understood. In addition, the pulmonary vascular endothelium, red cells, lung innervation, and numerous circulating vasoactive agents also affect the strength of HPV. This review will discuss the pathophysiology of HPV and address its role in pulmonary hypertension associated with World Health Organization Group 3 diseases. When sustained beyond many hours, HPV may initiate pulmonary vascular remodeling and lead to more fixed and less oxygen-responsive pulmonary hypertension if the hypoxic stimulus is maintained.


2015 ◽  
Vol 14 (5) ◽  
pp. 7290.2015.00003 ◽  
Author(s):  
François Harel ◽  
Xavier Levac ◽  
Quang T. Nguyen ◽  
Myriam Létourneau ◽  
Sophie Marcil ◽  
...  

Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1379-1383 ◽  
Author(s):  
B Meyrick ◽  
RJ Workman ◽  
MG Frazer ◽  
M Okamoto ◽  
JE Hazlewood ◽  
...  

Abstract Whether migration of granulocytes across pulmonary vascular endothelium in the absence of structural evidence of endothelial injury causes increased production of thromboxane or prostacyclin is not known. Using bovine pulmonary artery intimal explants mounted in Boyden chambers and homologous separated granulocytes, concentrations of thromboxane B2 and 6-keto-PGF1 alpha in the upper-well fluid were measured by radioimmunoassay over a three-hour period under the following conditions: (1) granulocyte chemotaxis (zymosan-activated plasma in the lower well, granulocytes in the upper well); (2) unstimulated granulocyte migration (serum or plasma in the lower well, granulocytes in the upper well); (3) granulocyte activation without migration (zymosan-activated plasma and granulocytes in the upper well); (4) granulocyte chemotaxis in the absence of endothelium (identical to condition 1 above except that endothelium was scraped from the explant surface); and (5) explants incubated in the absence of granulocytes. Minimal increases in thromboxane B2 concentrations in upper-well fluid occurred under all conditions. In contrast, granulocyte chemotaxis was accompanied by large increases in concentrations of 6-keto-PGF1 alpha evident by two hours of incubation and increasing markedly by three hours, to 524.3 +/- 69.0 ng/mL (m +/- SEM). Unstimulated migration of granulocytes toward serum or plasma and granulocyte activation without migration were accompanied, at three hours, by more modest increases in 6-keto-PGF1 alpha (296.5 +/- 46.4; 128.0 +/- 38.6, and 236.7 +/- 47.0 ng/mL, respectively) and, in the absence of granulocytes or in the absence of endothelium, only minimal increases in this prostacyclin metabolite occurred (137.2 +/- 16.9 and 53.9 +/- 12.6 ng/mL, respectively). The large rises in prostacyclin metabolite occurred at a time when the majority of granulocytes had migrated through the endothelial layer rather than during their adherence or transendothelial passage. We conclude that chemotaxis of granulocytes through pulmonary vascular endothelium causes endothelial production of large amounts of prostacyclin, but this occurs late in the chemotactic process, after granulocytes have transversed the endothelium.


1997 ◽  
Vol 18 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Z-Q Han ◽  
H A Coppock ◽  
D M Smith ◽  
S Van Noorden ◽  
M W Makgoba ◽  
...  

ABSTRACT An abundant, seven trans-membrane domain receptor related to the calcitonin receptor has been studied by a number of groups without identification of its ligand. A recent report claimed that the receptor was a type 1 CGRP receptor (Aiyar et al J. Biol. Chem. 271 11325-11329 (1996)). We have studied the equivalent rat sequence in transfected cells. When expressed in 293 cells the receptor interacts with CGRP and adrenomedullin with KD values of 1.2 nM for CGRP and 11 nM for adrenomedullin. Both ligands cause an elevation of intracellular cAMP with EC50 values of 4 nM and 20 nM respectively and these effects are inhibited by the antagonist CGRP8-37. The receptor is expressed at high levels in the pulmonary vascular endothelium. Both the pharmacological data and the localisation are consistent with the conclusion that the orphan receptor is a type 1 CGRP receptor. However, when expressed in COS-7 cells, no receptor activity could be demonstrated suggesting that 293 cells contain a factor necessary for functional receptor expression.


Sign in / Sign up

Export Citation Format

Share Document