scholarly journals Effect of Shake-Fire Delay on the Amount of Delivered Dose from pMDI Albuterol HFA

Author(s):  
R. Qaqish ◽  
A. Berlinski
Keyword(s):  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dominique Lison ◽  
Saloua Ibouraadaten ◽  
Sybille van den Brule ◽  
Milica Todea ◽  
Adriana Vulpoi ◽  
...  

Abstract Background In vitro models are widely used in nanotoxicology. In these assays, a careful documentation of the fraction of nanomaterials that reaches the cells, i.e. the in vitro delivered dose, is a critical element for the interpretation of the data. The in vitro delivered dose can be measured by quantifying the amount of material in contact with the cells, or can be estimated by applying particokinetic models. For carbon nanotubes (CNTs), the determination of the in vitro delivered dose is not evident because their quantification in biological matrices is difficult, and particokinetic models are not adapted to high aspect ratio materials. Here, we applied a rapid and direct approach, based on femtosecond pulsed laser microscopy (FPLM), to assess the in vitro delivered dose of multi-walled CNTs (MWCNTs). Methods and results We incubated mouse lung fibroblasts (MLg) and differentiated human monocytic cells (THP-1) in 96-well plates for 24 h with a set of different MWCNTs. The cytotoxic response to the MWCNTs was evaluated using the WST-1 assay in both cell lines, and the pro-inflammatory response was determined by measuring the release of IL-1β by THP-1 cells. Contrasting cell responses were observed across the MWCNTs. The sedimentation rate of the different MWCNTs was assessed by monitoring turbidity decay with time in cell culture medium. These turbidity measurements revealed some differences among the MWCNT samples which, however, did not parallel the contrasting cell responses. FPLM measurements in cell culture wells revealed that the in vitro delivered MWCNT dose did not parallel sedimentation data, and suggested that cultured cells contributed to set up the delivered dose. The FPLM data allowed, for each MWCNT sample, an adjustment of the measured cytotoxicity and IL-1β responses to the delivered doses. This adjusted in vitro activity led to another toxicity ranking of the MWCNT samples as compared to the unadjusted activities. In macrophages, this adjusted ranking was consistent with existing knowledge on the impact of surface MWCNT functionalization on cytotoxicity, and might better reflect the intrinsic activity of the MWCNT samples. Conclusion The present study further highlights the need to estimate the in vitro delivered dose in cell culture experiments with nanomaterials. The FPLM measurement of the in vitro delivered dose of MWCNTs can enrich experimental results, and may refine our understanding of their interactions with cells.


2009 ◽  
Vol 90 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Paul M.A. van Haaren ◽  
Arjan Bel ◽  
Pieter Hofman ◽  
Marco van Vulpen ◽  
Alexis N.T.J. Kotte ◽  
...  

2020 ◽  
Vol 152 ◽  
pp. S45-S46
Author(s):  
L. Shelley ◽  
D. Noble ◽  
M. Romanchikova ◽  
K. Harrison ◽  
A. Bates ◽  
...  

2013 ◽  
Vol 53 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Sarah O. S. Osman ◽  
Eleftheria Astreinidou ◽  
Peter C. Levendag ◽  
Ben J. M. Heijmen
Keyword(s):  

2001 ◽  
Vol 58 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Tommy Knöös ◽  
Stefan A Johnsson ◽  
Crister P Ceberg ◽  
Andrej Tomaszewicz ◽  
Per Nilsson
Keyword(s):  
X Rays ◽  

2021 ◽  
Author(s):  
Brigid A McDonald ◽  
Carlos Cardenas ◽  
Nicolette O'Connell ◽  
Sara Ahmed ◽  
Mohamed A. Naser ◽  
...  

Purpose: In order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)-linear accelerator (MR-linac), the low-resolution T2-weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction. In this study, our goal is to evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on-board setup MRIs from the MR-linac for off-line reconstruction of delivered dose. Methods: Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. 20 autosegmentation methods were evaluated in ADMIRE: 1-9) atlas-based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10-19) autosegmentation using images from a patient's 1-4 prior fractions (individualized patient prior (IPP)) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance, Hausdorff distance, and Jaccard index. For each metric and OAR, performance was compared to the inter-observer variability using Dunn's test with control. Methods were compared pairwise using the Steel-Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high-performing autosegmentation methods (DL, IPP with RF and 4 fractions (IPP_RF_4), IPP with 1 fraction (IPP_1)), and one low-performing (PAL with STAPLE and 5 atlases (PAL_ST_5)). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics. Results: DL and IPP methods performed best overall, all significantly outperforming inter-observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter-observer variability or from each other. DL was the fastest method (33 seconds per case) and PAL methods the slowest (3.7 - 13.8 minutes per case). Execution time increased with number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314). Conclusions: The autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on-board T2-weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end-to-end dose accumulation workflow.


Sign in / Sign up

Export Citation Format

Share Document