delivered dose
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 76)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Eva L. Bergsten ◽  
Katarina Wijk ◽  
David M. Hallman

Activity-based workplaces (ABW) have been implemented in many organizations to offer office flexibility and decrease facility costs. Evaluations of the ABW implementation process are rare. The study aimed to examine the ABW relocation process of two offices in a Swedish governmental agency and to explore factors that influence the implementation process and satisfaction with it. Qualitative or quantitative data were collected on process variables (context, recruitment, reach, dose delivered, dose received, satisfaction), barriers and facilitators to the process were explored in focus group interviews, and immediate outcomes (perceived knowledge, understanding office rules, satisfying information and support) were measured by questionnaire before and after the relocation. The evaluation showed that recruitment was unsatisfactory and reach insufficient—and participation in activities was thus low for both offices. However, intended changes improved. Unclear aims of ABW, lack of manager support and, lack of communication were some of the reported barriers to participation, while a well-planned process, work groups, and program activities were facilitators. Thus, to increase satisfaction with the relocation, our results suggest that recruitment should be thoroughly planned, taking these factors into account to increase participation. This knowledge may be useful for planning and designing successful ABW relocations and evaluations.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jörg Tamihardja ◽  
Sinan Cirsi ◽  
Patrick Kessler ◽  
Gary Razinskas ◽  
Florian Exner ◽  
...  

Abstract Background Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. Methods Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTVDIL, PTVBoost, PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. Results In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTVDIL, PTVBoost, and PTV was excellent and no cases of underdosage in DMean, D95%, D02%, and D98% could be detected. Delivered rectum DMean did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95% CI 1.3–3.1 Gy, p < 0.001) compared to ventral lesions. Conclusions CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage.


2021 ◽  
Author(s):  
Brigid A McDonald ◽  
Carlos Cardenas ◽  
Nicolette O'Connell ◽  
Sara Ahmed ◽  
Mohamed A. Naser ◽  
...  

Purpose: In order to accurately accumulate delivered dose for head and neck cancer patients treated with the Adapt to Position workflow on the 1.5T magnetic resonance imaging (MRI)-linear accelerator (MR-linac), the low-resolution T2-weighted MRIs used for daily setup must be segmented to enable reconstruction of the delivered dose at each fraction. In this study, our goal is to evaluate various autosegmentation methods for head and neck organs at risk (OARs) on on-board setup MRIs from the MR-linac for off-line reconstruction of delivered dose. Methods: Seven OARs (parotid glands, submandibular glands, mandible, spinal cord, and brainstem) were contoured on 43 images by seven observers each. Ground truth contours were generated using a simultaneous truth and performance level estimation (STAPLE) algorithm. 20 autosegmentation methods were evaluated in ADMIRE: 1-9) atlas-based autosegmentation using a population atlas library (PAL) of 5/10/15 patients with STAPLE, patch fusion (PF), random forest (RF) for label fusion; 10-19) autosegmentation using images from a patient's 1-4 prior fractions (individualized patient prior (IPP)) using STAPLE/PF/RF; 20) deep learning (DL) (3D ResUNet trained on 43 ground truth structure sets plus 45 contoured by one observer). Execution time was measured for each method. Autosegmented structures were compared to ground truth structures using the Dice similarity coefficient, mean surface distance, Hausdorff distance, and Jaccard index. For each metric and OAR, performance was compared to the inter-observer variability using Dunn's test with control. Methods were compared pairwise using the Steel-Dwass test for each metric pooled across all OARs. Further dosimetric analysis was performed on three high-performing autosegmentation methods (DL, IPP with RF and 4 fractions (IPP_RF_4), IPP with 1 fraction (IPP_1)), and one low-performing (PAL with STAPLE and 5 atlases (PAL_ST_5)). For five patients, delivered doses from clinical plans were recalculated on setup images with ground truth and autosegmented structure sets. Differences in maximum and mean dose to each structure between the ground truth and autosegmented structures were calculated and correlated with geometric metrics. Results: DL and IPP methods performed best overall, all significantly outperforming inter-observer variability and with no significant difference between methods in pairwise comparison. PAL methods performed worst overall; most were not significantly different from the inter-observer variability or from each other. DL was the fastest method (33 seconds per case) and PAL methods the slowest (3.7 - 13.8 minutes per case). Execution time increased with number of prior fractions/atlases for IPP and PAL. For DL, IPP_1, and IPP_RF_4, the majority (95%) of dose differences were within 250 cGy from ground truth, but outlier differences up to 785 cGy occurred. Dose differences were much higher for PAL_ST_5, with outlier differences up to 1920 cGy. Dose differences showed weak but significant correlations with all geometric metrics (R2 between 0.030 and 0.314). Conclusions: The autosegmentation methods offering the best combination of performance and execution time are DL and IPP_1. Dose reconstruction on on-board T2-weighted MRIs is feasible with autosegmented structures with minimal dosimetric variation from ground truth, but contours should be visually inspected prior to dose reconstruction in an end-to-end dose accumulation workflow.


Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Vladimir Bovtenko ◽  
Igor Zinchenko ◽  
Yurij Stolper

Aim. The purpose was to provide the rationale of test in regard to uniformity of fine particles dose for pressurised metered dose inhalers (pMDIs). Materials and methods. The pMDIs containing suspensions of salbutamol sulfate (SS) or solutions of beclometasone dipropionate (BD) were studied by laser diffraction and high performance liquid chromatography (HPLC). The particle size distribution of SS, the average dose mass and uniformity of dose mass, the average delivered dose and the uniformity of delivered dose, the average fine particles dose and uniformity of fine particles dose were determined. Apparatus A was used for assessment of fine particles dose. Results. The two analytical procedures for the quantitative determination of SS and BD by HPLC were validated in the ranges with low concentrations of these substances. The 5 medicinal products in pMDI dosage form were studied: 3 preparations were with SS and 2 ones contained BD. It was shown that three products with SS were very similar in regard to particle size distribution in containers and the average values of delivered dose were almost the same, but these products were different in the average dose mass and fine particle dose. According to the research results, the expediency of determining the average dose mass and the tests concerning uniformity of dosing of preparations by dose mass and by fine particle dose was substantiated. It was shown that in the case of pMDI the dosing of solutions of BD was more uniform compared to suspensions of SS. The approaches of leading and other pharmacopoeias concerning uniformity of dosing for pMDIs were critically discussed. The expediency of determination of uniformity of fine particle dose at the stage of pharmaceutical development was substantiated, as the therapeutic effect depends on fine particle dose. Issues concerning standardization pMDIs in regard to uniformity of fine particle dose were discussed. Conclusions. The expediency of standardization and quality control of pMDIs in regard to such attributes as the average dose mass, which characterizes the volume of the metering chamber of the valve as well as the uniformity of the dose mass and the uniformity of fine particle dose, which assure the therapeutic effect of each dose of the product was substantiated


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai J. Borm ◽  
Yannis Junker ◽  
Mathias Düsberg ◽  
Michal Devečka ◽  
Stefan Münch ◽  
...  

AbstractThe current study aims to assess the effect of cone beam computed tomography (CBCT) frequency during adjuvant breast cancer radiotherapy with simultaneous integrated boost (SIB) on target volume coverage and dose to the organs at risk (OAR). 50 breast cancer patients receiving either non-hypofractionated or hypofractionated radiotherapy after lumpectomy including a SIB to the tumor bed were selected for this study. All patients were treated in volumetric modulated arc therapy (VMAT) technique and underwent daily CBCT imaging. In order to estimate the delivered dose during the treatment, the applied fraction doses were recalculated on daily CBCT scans and accumulated using deformable image registration. Based on a total of 2440 dose recalculations, dose coverage in the clinical target volumes (CTV) and OAR was compared depending on the CBCT frequency. The estimated delivered dose (V95%) for breast-CTV and SIB-CTV was significantly lower than the planned dose distribution, irrespective of the CBCT-frequency. Between daily CBCT and CBCT on alternate days, no significant dose differences were found regarding V95% for both, breast-CTV and SIB-CTV. Dose distribution in the OAR was similar for both imaging protocols. Weekly CBCT though led to a significant decrease in dose coverage compared to daily CBCT and a small but significant dose increase in most OAR. Daily CBCT imaging might not be necessary to ensure adequate dose coverage in the target volumes while efficiently sparing the OAR during adjuvant breast cancer radiotherapy with SIB.


2021 ◽  
Vol 161 ◽  
pp. S15-S17
Author(s):  
I. Gleeson ◽  
M. Toomey ◽  
K. Hutchinson ◽  
H. Chantler
Keyword(s):  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1179
Author(s):  
Arzu Ari ◽  
James B. Fink

Acutely ill children may transition between spontaneous breathing (SB), noninvasive ventilation (NIV), and mechanical ventilation (MV), and commonly receive the same drug dosage with each type of ventilatory support and interface. This study aims to determine the aerosol deposition with jet (JN) and mesh nebulizers (MN) during SB, NIV, and MV using a pediatric lung model. Drug delivery with JN (Mistymax10) and MN (Aerogen Solo) was compared during SB, NIV, and MV using three different lung models set to simulate the same breathing parameters (Vt 250 mL, RR 20 bpm, I:E ratio 1:3). A heated humidifier was placed between the filter and test lung to simulate exhaled humidity (35 ± 2 °C, 100% RH) with all lung models. Albuterol sulfate (2.5 mg/3 mL) was delivered, and the drug deposited on an absolute filter was eluted and analyzed with spectrophotometry. Aerosol delivery with JN was not significantly different during MV, NIV, and SB (p = 0.075), while inhaled dose obtained with MN during MV was greater than NIV and SB (p = 0.001). The delivery efficiency of MN was up to 3-fold more than JN during MV (p = 0.008), NIV (p = 0.005), and SB (p = 0.009). Delivered dose with JN was similar during MV, NIV, and SB, although the delivery efficiency of MN differs with different modes of ventilation.


Sign in / Sign up

Export Citation Format

Share Document