Tidal Volume Reduction for Prevention of Ventilator-induced Lung Injury in Acute Respiratory Distress Syndrome

1998 ◽  
Vol 158 (6) ◽  
pp. 1831-1838 ◽  
Author(s):  
LAURENT BROCHARD ◽  
FRANÇOISE ROUDOT-THORAVAL ◽  
ERIC ROUPIE ◽  
CHRISTOPHE DELCLAUX ◽  
JEAN CHASTRE ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xue Lin ◽  
Ying-nan Ju ◽  
Wei Gao ◽  
Dong-mei Li ◽  
Chang-chun Guo

Ventilator-induced lung injury aggravates the existing lung injury. This study investigated the effect of desflurane on VILI in a rat model of acute respiratory distress syndrome. Forty-eight rats were randomized into a sham (S) group, control (C) group, lipopolysaccharide/ventilation (LV) group, lipopolysaccharide/ventilation/desflurane (LVD) group, or lipopolysaccharide/low ventilation with and without desflurane (LLV and LLVD) groups. Rats in the S group received anesthesia only. Rats in the LV and LVD groups received lipopolysaccharide and were ventilated with a high tidal volume. Rats in LLV and LLVD groups were treated as the LV and LVD groups and ventilated with a low tidal volume. PaO2/FiO2, lung wet-to-dry weight ratios, concentrations of inflammatory factors in serum and BALF, histopathologic analysis of lung tissue, and levels of nuclear factor- (NF-) κB protein in lung tissue were investigated. PaO2/FiO2 was significantly increased by desflurane. Total cell count, macrophages, and neutrophils in BALF and proinflammatory factors in BALF and serum were significantly decreased by desflurane, while IL-10 was increased. The histopathological changes and levels of NF-κB protein in lung tissue were decreased by desflurane. The results indicated that desflurane ameliorated VILI in a rat model of acute respiratory distress syndrome.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jed Lipes ◽  
Azadeh Bojmehrani ◽  
Francois Lellouche

Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.


2015 ◽  
Vol 123 (2) ◽  
pp. 423-433 ◽  
Author(s):  
Cynthia S. Samary ◽  
Raquel S. Santos ◽  
Cíntia L. Santos ◽  
Nathane S. Felix ◽  
Maira Bentes ◽  
...  

Abstract Background: Ventilator-induced lung injury has been attributed to the interaction of several factors: tidal volume (VT), positive end-expiratory pressure (PEEP), transpulmonary driving pressure (difference between transpulmonary pressure at end-inspiration and end-expiration, ΔP,L), and respiratory system plateau pressure (Pplat,rs). Methods: Forty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomized into combinations of VT and PEEP, yielding three different ΔP,L levels: ΔP,LLOW (VT = 6 ml/kg, PEEP = 3 cm H2O); ΔP,LMEAN (VT = 13 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 9.5 cm H2O); and ΔP,LHIGH (VT = 22 ml/kg, PEEP = 3 cm H2O or VT = 6 ml/kg, PEEP = 11 cm H2O). In other groups, at low VT, PEEP was adjusted to obtain a Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH at high VT. Results: At ΔP,LLOW, expressions of interleukin (IL)-6, receptor for advanced glycation end products (RAGE), and amphiregulin were reduced, despite morphometric evidence of alveolar collapse. At ΔP,LHIGH (VT = 6 ml/kg and PEEP = 11 cm H2O), lungs were fully open and IL-6 and RAGE were reduced compared with ΔP,LMEAN (27.4 ± 12.9 vs. 41.6 ± 14.1 and 0.6 ± 0.2 vs. 1.4 ± 0.3, respectively), despite increased hyperinflation and amphiregulin expression. At ΔP,LMEAN (VT = 6 ml/kg and PEEP = 9.5 cm H2O), when PEEP was not high enough to keep lungs open, IL-6, RAGE, and amphiregulin expression increased compared with ΔP,LLOW (41.6 ± 14.1 vs. 9.0 ± 9.8, 1.4 ± 0.3 vs. 0.6 ± 0.2, and 6.7 ± 0.8 vs. 2.2 ± 1.0, respectively). At Pplat,rs similar to that achieved with ΔP,LMEAN and ΔP,LHIGH, higher VT and lower PEEP reduced IL-6 and RAGE expression. Conclusion: In the acute respiratory distress syndrome model used in this experiment, two strategies minimized ventilator-induced lung injury: (1) low VT and PEEP, yielding low ΔP,L and Pplat,rs; and (2) low VT associated with a PEEP level sufficient to keep the lungs open.


Sign in / Sign up

Export Citation Format

Share Document