New species, occurrence records and observations of predation by deep-sea Asteroidea (Echinodermata) from the North Atlantic by NOAA ship Okeanos Explorer

Zootaxa ◽  
2020 ◽  
Vol 4766 (2) ◽  
pp. 201-260 ◽  
Author(s):  
CHRISTOPHER L. MAH

Exploratory cruises by the NOAA Ship Okeanos Explorer have resulted in a substantial contribution in our understanding of deep-sea echinoderm biodiversity, biology, and ecology in the North Atlantic. This includes the description and in situ feeding observations of two, new corallivorous goniasterid species, Evoplosoma nizinskiae n. sp. and Sibogaster bathyheuretor n. sp. Significant in situ observations include a synchronous feeding event including multiple goniasterid asteroids and a cidaroid urchin on a large demosponge, providing new data for understanding echinoderm feeding behavior, including agonistic behavior, in deep-sea settings and new, in situ feeding observations for 28 deep-sea species including the myxasterid Pythonaster atlantidis, the korethrasterid Remaster palmatus and the poorly understood hippasterine goniasterids, Gilbertaster caribaea and Sthenaster emmae. 

1997 ◽  
Vol 102 (D9) ◽  
pp. 10739-10750 ◽  
Author(s):  
H. Schlager ◽  
P. Konopka ◽  
P. Schulte ◽  
U. Schumann ◽  
H. Ziereis ◽  
...  

ZooKeys ◽  
2021 ◽  
Vol 1031 ◽  
pp. 19-39
Author(s):  
Anne-Nina Lörz ◽  
Tammy Horton

Amathillopsidae is a widely distributed, but rarely sampled family of deep-sea amphipods. During a recent expedition to the North Atlantic, specimens were filmed clinging to a polychaete tube in situ at abyssal depths by a Remote Operated Vehicle and then sampled for further study. The species was new to science and is described in detail herein. A barcode sequence is provided. Further investigations of photographic and video records revealed the genus Amathillopsis to be more widely distributed, both geographically and bathymetrically, than indicated by current literature records, and that these species occur at abyssal depths in all oceans. Specimens of Amathillopsis are reported clinging to a variety of different organisms whose erect structures provide the means to raise these charismatic deep-sea predators above the seafloor facilitating feeding opportunities.


2020 ◽  
Vol 20 (13) ◽  
pp. 8157-8179 ◽  
Author(s):  
Andreas Petzold ◽  
Patrick Neis ◽  
Mihal Rütimann ◽  
Susanne Rohs ◽  
Florian Berkes ◽  
...  

Abstract. The vertical distribution and seasonal variation of water vapour volume mixing ratio (H2O VMR), of relative humidity with respect to ice (RHice) and particularly of regions with ice-supersaturated air masses (ISSRs) in the extratropical upper troposphere and lowermost stratosphere are investigated at northern mid-latitudes over the eastern North American, North Atlantic and European regions for the period 1995 to 2010. Observation data originate from regular and continuous long-term measurements on board instrumented passenger aircraft in the framework of the European research programme MOZAIC (1994–2010), which continues as the European research infrastructure IAGOS (from 2011). Data used in our study result from collocated observations of O3 VMR, RHice and temperature, as well as H2O VMR deduced from RHice and temperature data. The in situ observations of H2O VMR and RHice with a vertical resolution of 30 hPa (< 750 m at the extratropical tropopause level) and a horizontal resolution of 1 km resolve detailed features of the distribution of water vapour and ice-supersaturated air relative to the thermal tropopause, including their seasonal and regional variability and chemical signatures at various distances from the tropopause layer. Annual cycles of the investigated properties document the highest H2O VMR and temperatures above the thermal tropopause in the summer months, whereas RHice above the thermal tropopause remains almost constant in the course of the year. Over all investigated regions, upper tropospheric air masses close to the tropopause level are nearly saturated with respect to ice and contain a significant fraction of ISSRs with a distinct seasonal cycle of minimum values in summer (30 % over the ocean, 20 %–25 % over land) and maximum values in late winter (35 %–40 % over both land and ocean). Above the thermal tropopause, ISSRs are occasionally observed with an occurrence probability of 1.5 ± 1.1 %, whereas above the dynamical tropopause at 2 PVU (PVU: potential vorticity unit), the occurrence probability increases 4-fold to 8.4 ± 4.4 %. In both coordinate systems related to tropopause height (TPH), the ISSR occurrence probabilities drop to values below 1 % for the next higher air mass layer with pressure levels p < pTPH−15 hPa. For both tropopause definitions, the tropospheric nature or fingerprint, based on O3 VMR, indicates the continuing tropospheric influence on ISSRs inside and above the respective tropopause layer. For the non-ISSRs, however, the stratospheric nature is clearly visible above the thermal tropopause, whereas above the dynamical tropopause the air masses show a still substantial tropospheric influence. For all three regions, seasonal deviations from the long-term annual cycle of ISSR occurrence show no significant trends over the observation period of 15 years, whereas a statistically significant correlation between the North Atlantic Oscillation (NAO) index and the deviation of ISSR occurrence from the long-term average is observed for the North Atlantic region but not for the eastern North American and European regions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


1937 ◽  
Vol 18 (1) ◽  
pp. 224
Author(s):  
W. H. Bradley ◽  
M. N. Bramlette ◽  
J. A. Cushman ◽  
L. G. Henbest ◽  
K. E. Lahman ◽  
...  

2019 ◽  
Author(s):  
Tanguy Szekely ◽  
Jérôme Gourrion ◽  
Sylvie Pouliquen ◽  
Gilles Reverdin

Abstract. We present the Copernicus in-situ ocean dataset of temperature and salinity (version V5.2). The ocean subsurface sampling varied widely from 1950 to 2017, as a result of changes in the instrument technology and development of in-situ observational networks (in particular, tropical moorings, ARGO program). The global ocean temperature data coverage on an annual basis grows thus from 10 % in 1950 (30 % for the North Atlantic basin) to 25 % in 2000 (60 % for the North Atlantic basin) and reaches a plateau exceeding 80 % (95 % for the North Atlantic Ocean) after the deployment of the ARGO program. The average depth reached by the profiles also increases from 1950 to 2017. The validation framework is presented, and an objective analysis-based method is developed to assess the quality of the dataset validation process. Analyses of the ocean variability are calculated without taking into account the data quality flags (raw dataset OA), with the near real time quality flags (NRT dataset OA) and with the delayed time mode quality flags (CORA dataset OA). The comparison of the objective analysis variability shows that the near real time dataset managed to detect and to flag most of the large measurement errors, reducing the analysis error bar compared to the raw dataset error bar. It also shows that the ocean variability of the delayed time mode validated dataset is almost exempt from the random error induced variability.


2020 ◽  
Vol 73 ◽  
pp. 125664 ◽  
Author(s):  
Suzana Živaljić ◽  
Anja Scherwass ◽  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Pablo Quintela-Alonso ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Patricia Puerta ◽  
Clare Johnson ◽  
Marina Carreiro-Silva ◽  
Lea-Anne Henry ◽  
Ellen Kenchington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document