scholarly journals Effective Factors in Causing Leakage in Water Supply Systems and Urban Water Distribution Networks

2015 ◽  
Vol 3 (2) ◽  
pp. 60 ◽  
Author(s):  
Hassan Saghi



2015 ◽  
Vol 1 (2) ◽  
pp. 129-134
Author(s):  
Ladislav Tuhovčák ◽  
Miloslav Tauš ◽  
Tomáš Sucháček

The knowledge of the current technical condition of the operated system is in the interest of the owner or operator of public water supply systems. Such information is the starting point when making decisions on investment projects or planning water mains renewal. The submitted paper introduces the methodology of preliminary assessment of the technical condition of water supply systems and outputs of the software application TEA Water, which makes it possible to assess the technical condition of the specific elements of the water supply systems and clear displaying with the presentation of the assessment results for the entire considered water supply system.



2019 ◽  
Vol 79 ◽  
pp. 01015 ◽  
Author(s):  
ChenLei Xie ◽  
QianSheng Fang ◽  
HongYan Zhang ◽  
JiXin Zhang

It is necessary to monitor the pressure in the networks in real time, when we face the problem of pipe burst and leakage in urban water supply network. Therefore, it is particularly important to arrange pressure monitoring points in appropriate places in the pipeline networks. The pressure monitoring point layout is often based on similar degree of the node pressure data in the current stage. A method of optimal pressure monitoring point location in the urban water distribution networks was proposed in this paper. Since the above method did not consider spatial properties of network node. The original feature matrix data is constructed by acquiring the spatial attributes of the pressure monitoring nodes and calculating the non-spatial attributes of the nodes. The original feature matrix data will be normalized. Then the Optics clustering algorithm is used to cluster the normalized node feature matrix data to determine the location and number of pressure monitoring points in monitoring area of urban water distribution networks. Experimental results show that the method effectively ensures that the pressure monitoring points can grasp the pressure information of the whole water supply network more comprehensively and rationally, improves the economy of the pressure monitoring points layout, and provides good guidance for the actual layout of pressure monitoring points in municipal water distribution networks.



2019 ◽  
Vol 85 ◽  
pp. 07009
Author(s):  
Alexandru Aldea ◽  
Mihaela Aldea ◽  
Sorin Perju

The population growth and/or its use and development of the land is a continuous preoccupation of the decision factors regarding the water supply system in general and the development of the potable water distribution networks in particular. This issue is even more critical especially in the areas of big cities and important urban growing. As the urbanization of land outgrows the existing water supply systems, one of the possible solutions is to expand the water distribution network in order to cover this urban growth. The present paper analyses further the possibilities to define and use certain indices of urban development together with water loss indices in order to determine trends or issues related with the provision of water supply services and connectivity.





2021 ◽  
Vol 20 (3) ◽  
pp. 251-277
Author(s):  
Bankerlang Kharmylliem ◽  
Ngamjahao Kipgen

Abstract This article examines urban water supply systems by using indicators such as quantity, quality, accessibility, and reliability. Shillong city is divided into numerous localities, each governed by both formal (municipal) and informal (non-municipal) institutions. This study focuses on domestic water aspects in non-municipal areas and argues that water inequity is more prominent and widespread, and the role of local institutions in water governance is greater and more significant. The article underscores the complementarity between water distribution and water governance rendered by the local institutions.



2012 ◽  
Vol 12 (4) ◽  
pp. 523-530 ◽  
Author(s):  
S. Christodoulou ◽  
A. Agathokleous

Faced with extended periods of drought and short supply of water, arid-weather countries have turned to intermittent water supply (IWS) as a means to reduce water consumption and to prolong their national water reserves. Unfortunately, such drastic measures usually fail to consider the effects of intermittent supply on the condition of piping networks and the resulting water losses, inefficiencies and overall maintenance cost on these networks. Presented herein is research work on the effects of IWS on the vulnerability of urban water distribution networks (UWDN) based on a 3-year dataset from major urban centres in Cyprus. The dataset includes information on breakage incidents, operating network parameters, external factors and vulnerability assessment and by use of data-mining and survival analysis techniques evaluates the effects of such intermittent supply strategies on the vulnerability of the water pipes and on the sustainability of the strategy.



2017 ◽  
Vol 18 (1) ◽  
pp. 214-221
Author(s):  
K. L. Lam ◽  
P. A. Lant ◽  
S. J. Kenway

Abstract During the Millennium Drought in Australia, a wide range of supply-side and demand-side water management strategies were adopted in major southeast Australian cities. This study undertakes a time-series quantification (2001–2014) and comparative analysis of the energy use of the urban water supply systems and sewage systems in Melbourne and Sydney before, during and after the drought, and evaluates the energy implications of the drought and the implemented strategies. In addition, the energy implications of residential water use in Melbourne are estimated. The research highlights that large-scale adoption of water conservation strategies can have different impacts on energy use in different parts of the urban water cycle. In Melbourne, the per capita water-related energy use reduction in households related to showering and clothes-washing alone (46% reduction, 580 kWhth/p/yr) was far more substantial than that in the water supply system (32% reduction, 18 kWhth/p/yr). This historical case also demonstrates the importance of balancing supply- and demand-side strategies in managing long-term water security and related energy use. The significant energy saving in water supply systems and households from water conservation can offset the additional energy use from operating energy-intensive supply options such as inter-basin water transfers and seawater desalination during dry years.



Sign in / Sign up

Export Citation Format

Share Document