scholarly journals Analysis of Penalized Regression Methods in a Simple Linear Model on the High-Dimensional Data

Author(s):  
Zari Farhadi Zari Farhadi ◽  
Reza Arabi Belaghi ◽  
Ozlem Gurunlu Alma
2019 ◽  
Vol 30 (3) ◽  
pp. 697-719 ◽  
Author(s):  
Fan Wang ◽  
Sach Mukherjee ◽  
Sylvia Richardson ◽  
Steven M. Hill

AbstractPenalized likelihood approaches are widely used for high-dimensional regression. Although many methods have been proposed and the associated theory is now well developed, the relative efficacy of different approaches in finite-sample settings, as encountered in practice, remains incompletely understood. There is therefore a need for empirical investigations in this area that can offer practical insight and guidance to users. In this paper, we present a large-scale comparison of penalized regression methods. We distinguish between three related goals: prediction, variable selection and variable ranking. Our results span more than 2300 data-generating scenarios, including both synthetic and semisynthetic data (real covariates and simulated responses), allowing us to systematically consider the influence of various factors (sample size, dimensionality, sparsity, signal strength and multicollinearity). We consider several widely used approaches (Lasso, Adaptive Lasso, Elastic Net, Ridge Regression, SCAD, the Dantzig Selector and Stability Selection). We find considerable variation in performance between methods. Our results support a “no panacea” view, with no unambiguous winner across all scenarios or goals, even in this restricted setting where all data align well with the assumptions underlying the methods. The study allows us to make some recommendations as to which approaches may be most (or least) suitable given the goal and some data characteristics. Our empirical results complement existing theory and provide a resource to compare methods across a range of scenarios and metrics.


2020 ◽  
Vol 17 (2) ◽  
pp. 0550
Author(s):  
Ali Hameed Yousef ◽  
Omar Abdulmohsin Ali

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator has superior performance compared with other estimators.  


Author(s):  
Stacey Winham ◽  
Chong Wang ◽  
Alison A Motsinger-Reif

Recently, the amount of high-dimensional data has exploded, creating new analytical challenges for human genetics. Furthermore, much evidence suggests that common complex diseases may be due to complex etiologies such as gene-gene interactions, which are difficult to identify in high-dimensional data using traditional statistical approaches. Data-mining approaches are gaining popularity for variable selection in association studies, and one of the most commonly used methods to evaluate potential gene-gene interactions is Multifactor Dimensionality Reduction (MDR). Additionally, a number of penalized regression techniques, such as Lasso, are gaining popularity within the statistical community and are now being applied to association studies, including extensions for interactions. In this study, we compare the performance of MDR, the traditional lasso with L1 penalty (TL1), and the group lasso for categorical data with group-wise L1 penalty (GL1) to detect gene-gene interactions through a broad range of simulations.We find that each method has both advantages and disadvantages, and relative performance is context dependent. TL1 frequently over-fits, identifying false positive as well as true positive loci. MDR has higher power for epistatic models that exhibit independent main effects; for both Lasso methods, main effects tend to dominate. For purely epistatic models, GL1 has the best performance for lower minor allele frequencies, but MDR performs best for higher frequencies. These results provide guidance of when each approach might be best suited for detecting and characterizing interactions with different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document