scholarly journals Compact Steep-Spectrum Radio Sources and Ambient Medium Density

Author(s):  
Ezeugo Jeremiah Chukwuemerie
Author(s):  
Ezeugo Jeremiah Chukwuemerie

In this work, we use analytical methods to describe expansion of Extragalactic Radio Sources (EGRS). Result shows that source size expansion depends on the following parameters: age of the source, lobe internal pressure, ambient medium density, and angle of observation. Moreover, from the analyses, we have shown that the obtained results, and , suggestively implies that  and . This shows that since , jet internal pressure exceeds the lobe’s internal pressure. Therefore, for a typical EGRS, this simply indicates that ambient medium density is higher in the jet region than in the region of the lobe. This is expected since the ambient density thins out from the central core to the region where lobe is located. It is in consonance with the notion that for large extended EGRS, lobes are located outside the host galaxies rather than within the host galaxies. Moreover, we can conclude from these results that compact steep spectrum sources have denser ambient medium than their more extended counterparts.


1999 ◽  
Vol 515 (2) ◽  
pp. 558-566 ◽  
Author(s):  
David B. Shaffer ◽  
K. I. Kellermann ◽  
T. J. Cornwell
Keyword(s):  

1987 ◽  
Vol 121 ◽  
pp. 287-293
Author(s):  
C.J. Schalinski ◽  
P. Biermann ◽  
A. Eckart ◽  
K.J. Johnston ◽  
T.Ph. Krichbaum ◽  
...  

A complete sample of 13 flat spectrum radio sources is investigated over a wide range of frequencies and spatial resolutions. SSC-calculations lead to the prediction of bulk relativistic motion in all sources. So far 6 out of 7 sources observed with sufficient dynamic range by means of VLBI show evidence for apparent superluminal motion.


2002 ◽  
Vol 123 (2) ◽  
pp. 637-677 ◽  
Author(s):  
Carlos De Breuck ◽  
Wil van Breugel ◽  
S. A. Stanford ◽  
Huub Röttgering ◽  
George Miley ◽  
...  

2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


2014 ◽  
Vol 10 (S313) ◽  
pp. 231-235
Author(s):  
Leah K. Morabito ◽  
Adam Deller ◽  
J. B. R. Oonk ◽  
Huub Röttgering ◽  
George Miley

AbstractThe correlation between radio spectral steepness and redshift has been successfully used to find high redshift (z ⩾ 2) radio galaxies, but the origin of this relation is unknown. The ultra-steep spectra of high-z radio sources make them ideally suited for studies with the Low Band Antenna of the new Low Frequency Array, which covers 10–80 MHz and has baselines up to about 1300 km. As part of an ongoing survey, we use the longest baselines to map the low-frequency (< 70 MHz) spatial distributions along the jets of 5 bright extended steep spectrum high-z radio sources. From this, we will determine whether the spectra change over these spatially resolved sources, thereby constraining particle acceleration processes. We present early results from our low-frequency survey of ultra-steep spectrum radio galaxies. The first low frequency long baseline images of these objects are presented.


2021 ◽  
Vol 922 (2) ◽  
pp. 197
Author(s):  
Anna Wójtowicz ◽  
Łukasz Stawarz ◽  
Jerzy Machalski ◽  
Luisa Ostorero

Abstract The dynamical evolution and radiative properties of luminous radio galaxies and quasars of the FR II type, are well understood. As a result, through the use of detailed modeling of the observed radio emission of such sources, one can estimate various physical parameters of the systems, including the density of the ambient medium into which the radio structure evolves. This, however, requires rather comprehensive observational information, i.e., sampling the broadband radio continua of the targets at several frequencies, and imaging their radio structures with high resolution. Such observations are, on the other hand, not always available, especially for high-redshift objects. Here, we analyze the best-fit values of the source physical parameters, derived from extensive modeling of the largest currently available sample of FR II radio sources, for which good-quality multiwavelength radio flux measurements could be collected. In the analyzed data set, we notice a significant and nonobvious correlation between the spectral index of the nonthermal radio emission continuum, and density of the ambient medium. We derive the corresponding correlation parameters, and quantify the intrinsic scatter by means of Bayesian analysis. We propose that the discovered correlation could be used as a cosmological tool to estimate the density of ambient medium for large samples of distant radio galaxies. Our method does not require any detailed modeling of individual sources, and relies on limited observational information, namely, the slope of the radio continuum between the rest-frame frequencies 0.4 and 5 GHz, possibly combined with the total linear size of the radio structure.


Sign in / Sign up

Export Citation Format

Share Document