scholarly journals Research Progress of Bonding Agents for Nitramine Composite Solid Propellants

Author(s):  
Xuan Liu
2018 ◽  
Vol 189 ◽  
pp. 08001 ◽  
Author(s):  
Ali.M.Abd elall ◽  
Guo Lin

An effective pathway was explored to design and select proper bonding agents that could effectively improve the interfacial interactions between bonding agents and solid particles, modern types of composite solid propellants focused on increasing the mechanical properties in order to withstand stresses produced due to various loading conditions, changes in environmental condition, transportation and handling. In this work, the study show that the effect of solvent in production of bonding agent has a different impact on the mechanical properties as the polar solvent in formulation S3 has a good strain values corresponding to the stress. Also the changing of the percentage of CuCl2 has a significant effect on mechanical properties as giving high value of strain with the percentage of 4.5 % and returns back the value of strain decrease with increase the percentage of CuCl2 to give the lowest values of the strain corresponding to the stress value with percentage 7.5 %.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5353
Author(s):  
Guomin Lin ◽  
Yixue Chang ◽  
Yu Chen ◽  
Wei Zhang ◽  
Yanchun Ye ◽  
...  

Titanate-based bonding agents are a class of efficient bonding agents for improving the mechanical properties of composite solid propellants, a kind of special composite material. However, high solid contents often deteriorate the rheological properties of propellant slurry, which limits the application of bonding agents. To solve this problem, a series of long-chain alkyl chelated titanate binders, N-n-octyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-8), N-n-dodecyl-N, N-dihydroxyethyl-lactic acid-titanate (DLT-12), N-n-hexadecyl-N, N-Dihydroxyethyl-lactic acid-titanate (DLT-16), were designed and synthesized in the present work. The infrared absorption spectral changes of solid propellants caused by binder coating and adhesion degrees of the bonding agents on the oxidant surface were determined by micro-infrared microscopy (MIR) and X-ray photoelectron spectroscopy (XPS), respectively, to characterize the interaction properties of the bonding agents with oxidants, ammonium perchlorate (AP) and hexogen (RDX), in solid propellants. The further application tests suggest that the bonding agents can effectively interact with the oxidants and effectively improve the mechanical and rheological properties of the four-component hydroxyl-terminated polybutadiene (HTPB) composite solid propellants containing AP and RDX. The agent with longer bond chain length can improve the rheological properties of the propellant slurry more significantly, and the propellant of the best mechanical properties was obtained with DLT-12, consistent with the conclusion obtained in the interfacial interaction study. Our work has provided a new method for simultaneously improving the processing performance and rheological properties of propellants and offered an important guidance for the bonding agent design.


2016 ◽  
Vol 12 (4) ◽  
pp. 297-304 ◽  
Author(s):  
D. Chaitanya Kumar Rao ◽  
Narendra Yadav ◽  
Puran Chandra Joshi

Sign in / Sign up

Export Citation Format

Share Document