scholarly journals Valuation of European Call Options Using Wavelet-Based Pricing Model and Black-Scholes Pricing Model

2019 ◽  
Vol 5 (5) ◽  
pp. 92
Author(s):  
Sigei Sheila Chepkorir ◽  
Anthony Gichuhi Waititu ◽  
Jane Aduda Akinyi
2021 ◽  
Vol 25 (8) ◽  
pp. 6075-6082
Author(s):  
Hemanta Mandal ◽  
B. Bira ◽  
D. Zeidan

2004 ◽  
Vol 07 (07) ◽  
pp. 901-907
Author(s):  
ERIK EKSTRÖM ◽  
JOHAN TYSK

There are two common methods for pricing European call options on a stock with known dividends. The market practice is to use the Black–Scholes formula with the stock price reduced by the present value of the dividends. An alternative approach is to increase the strike price with the dividends compounded to expiry at the risk-free rate. These methods correspond to different stock price models and thus in general give different option prices. In the present paper we generalize these methods to time- and level-dependent volatilities and to arbitrary contract functions. We show, for convex contract functions and under very general conditions on the volatility, that the method which is market practice gives the lower option price. For call options and some other common contracts we find bounds for the difference between the two prices in the case of constant volatility.


2020 ◽  
Vol 20 (4) ◽  
pp. 60-83
Author(s):  
Vinícius Magalhães Pinto Marques ◽  
Gisele Tessari Santos ◽  
Mauri Fortes

ABSTRACTObjective: This article aims to solve the non-linear Black Scholes (BS) equation for European call options using Radial Basis Function (RBF) Multi-Quadratic (MQ) Method.Methodology / Approach: This work uses the MQ RBF method applied to the solution of two complex models of nonlinear BS equation for prices of European call options with modified volatility. Linear BS models are also solved to visualize the effects of modified volatility.  Additionally, an adaptive scheme is implemented in time based on the Runge-Kutta-Fehlberg (RKF) method.


2017 ◽  
Vol 6 (2) ◽  
pp. 99
Author(s):  
I GEDE RENDIAWAN ADI BRATHA ◽  
KOMANG DHARMAWAN ◽  
NI LUH PUTU SUCIPTAWATI

Holding option contracts are considered as a new way to invest. In pricing the option contracts, an investor can apply the binomial tree method. The aim of this paper is to present how the European option contracts are calculated using binomial tree method with some different choices of strike prices. Then, the results are compared with the Black-Scholes method. The results obtained show the prices of call options contracts of European type calculated by the binomial tree method tends to be cheaper compared with the price of that calculated by the Black-Scholes method. In contrast to the put option prices, the prices calculated by the binomial tree method are slightly more expensive.


Paradigm ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 73-92
Author(s):  
Anubha Srivastava ◽  
Manjula Shastri

Derivative trading, started in mid-2000, has become an integral and significant part of Indian stock market. The tremendous increase in trading volume in Indian stock market has reflected into high volatility in the option prices. The pricing of options is very complex aspect of applied finance and has been subject of extensive research. Black–Scholes option model is a scientific pricing model which is applied for determining the fair price for option contracts. This article examines if Black–Scholes option pricing model (BSOPM) is a good indicator of option pricing in Indian context. The literature review highlights that various studies have been conducted on BSOPM in various stock exchange across the world with mixed outcome on its relevance and applicability. This article is an empirical study to test the relevance of BSOPM for which 10 most popular industry’s stock listed on National Stock Exchange have been taken. Then the BSOPM has been applied using volatility and risk-free rate. Furthermore, t-test has been used to test the hypothesis and determine the significant relationship between BS model values and actual model values. This study concludes that BSOPM involves significant degree of mispricing. Hence, this model alone cannot be adopted as an indicator for option pricing. The variation from market price is synchronised with respect to moneyness and time to maturity of the option.


2016 ◽  
Vol 8 (3) ◽  
pp. 123
Author(s):  
Aparna Bhat ◽  
Kirti Arekar

Exchange-traded currency options are a recent innovation in the Indian financial market and their pricing is as yet unexplored. The objective of this research paper is to empirically compare the pricing performance of two well-known option pricing models – the Black-Scholes-Merton Option Pricing Model (BSM) and Duan’s NGARCH option pricing model – for pricing exchange-traded currency options on the US dollar-Indian rupee during a recent turbulent period. The BSM is known to systematically misprice options on the same underlying asset but with different strike prices and maturities resulting in the phenomenon of the ‘volatility smile’. This bias of the BSM results from its assumption of a constant volatility over the option’s life. The NGARCH option pricing model developed by Duan is an attempt to incorporate time-varying volatility in pricing options. It is a deterministic volatility model which has no closed-form solution and therefore requires numerical techniques for evaluation. In this paper we have compared the pricing performance and examined the pricing bias of both models during a recent period of volatility in the Indian foreign exchange market. Contrary to our expectations the pricing performance of the more sophisticated NGARCH pricing model is inferior to that of the relatively simple BSM model. However orthogonality tests demonstrate that the NGARCH model is free of the strike price and maturity biases associated with the BSM. We conclude that the deterministic BSM does a better job of pricing options than the more advanced time-varying volatility model based on GARCH.


Sign in / Sign up

Export Citation Format

Share Document