scholarly journals Mitochondrial Oxidative Stress in the Lungs of Cystic Fibrosis Transmembrane Conductance Regulator Protein Mutant Mice

2006 ◽  
Vol 35 (5) ◽  
pp. 579-586 ◽  
Author(s):  
Leonard W. Velsor ◽  
Chirag Kariya ◽  
Remy Kachadourian ◽  
Brian J. Day
2004 ◽  
Vol 72 (4) ◽  
pp. 2045-2051 ◽  
Author(s):  
Brian J. Day ◽  
Anna M. van Heeckeren ◽  
Elysia Min ◽  
Leonard W. Velsor

ABSTRACT The lung maintains an elevated level of glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. The mechanism(s) by which the lung maintains high levels of ELF GSH and factors that modulate them are largely unexplored. We hypothesized that lung cystic fibrosis transmembrane conductance regulator protein (CFTR) modulates GSH efflux in response to extracellular stress, which occurs with lung infections. Mice were challenged intratracheally with Pseudomonas aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants and enzyme activities were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.


1998 ◽  
Vol 275 (1) ◽  
pp. C323-C326 ◽  
Author(s):  
Paul Linsdell ◽  
John W. Hanrahan

The cystic fibrosis transmembrane conductance regulator (CFTR) forms an ion channel that is permeable both to Cl− and to larger organic anions. Here we show, using macroscopic current recording from excised membrane patches, that the anionic antioxidant tripeptide glutathione is permeant in the CFTR channel. This permeability may account for the high concentrations of glutathione that have been measured in the surface fluid that coats airway epithelial cells. Furthermore, loss of this pathway for glutathione transport may contribute to the reduced levels of glutathione observed in airway surface fluid of cystic fibrosis patients, which has been suggested to contribute to the oxidative stress observed in the lung in cystic fibrosis. We suggest that release of glutathione into airway surface fluid may be a novel function of CFTR.


2015 ◽  
Vol 43 (5) ◽  
pp. 894-900 ◽  
Author(s):  
Naomi L. Pollock ◽  
Tracy L. Rimington ◽  
Robert C. Ford

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


2014 ◽  
Vol 62 (11) ◽  
pp. 791-801 ◽  
Author(s):  
Pascale Marcorelles ◽  
Gaëlle Friocourt ◽  
Arnaud Uguen ◽  
Françoise Ledé ◽  
Claude Férec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document