mitochondrial oxidative stress
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 232)

H-INDEX

72
(FIVE YEARS 12)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiaoling Ma ◽  
Shengchi Wang ◽  
Hui Cheng ◽  
Haichun Ouyang ◽  
Xiaoning Ma

Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Joseph A. Bonanno ◽  
Raji Shyam ◽  
Moonjung Choi ◽  
Diego G. Ogando

Solute-linked cotransporter, SLC4A11, a member of the bicarbonate transporter family, is an electrogenic H+ transporter activated by NH3 and alkaline pH. Although SLC4A11 does not transport bicarbonate, it shares many properties with other members of the SLC4 family. SLC4A11 mutations can lead to corneal endothelial dystrophy and hearing deficits that are recapitulated in SLC4A11 knock-out mice. SLC4A11, at the inner mitochondrial membrane, facilitates glutamine catabolism and suppresses the production of mitochondrial superoxide by providing ammonia-sensitive H+ uncoupling that reduces glutamine-driven mitochondrial membrane potential hyperpolarization. Mitochondrial oxidative stress in SLC4A11 KO also triggers dysfunctional autophagy and lysosomes, as well as ER stress. SLC4A11 expression is induced by oxidative stress through the transcription factor NRF2, the master regulator of antioxidant genes. Outside of the corneal endothelium, SLC4A11’s function has been demonstrated in cochlear fibrocytes, salivary glands, and kidneys, but is largely unexplored overall. Increased SLC4A11 expression is a component of some “glutamine-addicted” cancers, and is possibly linked to cells and tissues that rely on glutamine catabolism.


Author(s):  
Guang-Hui Chen ◽  
Chang-Chun Song ◽  
Kostas Pantopoulos ◽  
Xiao-Lei Wei ◽  
Hua Zheng ◽  
...  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Sónia Sá Santos ◽  
João B. Moreira ◽  
Márcia Costa ◽  
Rui S. Rodrigues ◽  
Ana M. Sebastião ◽  
...  

Neural stem cells (NSCs), crucial for memory in the adult brain, are also pivotal to buffer depressive behavior. However, the mechanisms underlying the boost in NSC activity throughout life are still largely undiscovered. Here, we aimed to explore the role of deacetylase Sirtuin 3 (SIRT3), a central player in mitochondrial metabolism and oxidative protection, in the fate of NSC under aging and depression-like contexts. We showed that chronic treatment with tert-butyl hydroperoxide induces NSC aging, markedly reducing SIRT3 protein. SIRT3 overexpression, in turn, restored mitochondrial oxidative stress and the differentiation potential of aged NSCs. Notably, SIRT3 was also shown to physically interact with the long chain acyl-CoA dehydrogenase (LCAD) in NSCs and to require its activation to prevent age-impaired neurogenesis. Finally, the SIRT3 regulatory network was investigated in vivo using the unpredictable chronic mild stress (uCMS) paradigm to mimic depressive-like behavior in mice. Interestingly, uCMS mice presented lower levels of neurogenesis and LCAD expression in the same neurogenic niches, being significantly rescued by physical exercise, a well-known upregulator of SIRT3 and lipid metabolism. Our results suggest that targeting NSC metabolism, namely through SIRT3, might be a suitable promising strategy to delay NSC aging and confer stress resilience.


2021 ◽  
Vol 22 (24) ◽  
pp. 13384
Author(s):  
Paweł Kowalczyk ◽  
Dorota Sulejczak ◽  
Patrycja Kleczkowska ◽  
Iwona Bukowska-Ośko ◽  
Marzena Kucia ◽  
...  

The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. In this review, we summarize the most important findings that implicated mitochondrial oxidative stress in a wide variety of pathologies from Alzheimer disease (AD) to autoimmune type 1 diabetes. This review also discusses attempts to affect oxidative stress as a therapeutic avenue.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1956
Author(s):  
Yang Liu ◽  
Shujun Zhou ◽  
Du Xiang ◽  
Lingao Ju ◽  
Dexin Shen ◽  
...  

Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a “double-edged sword”, which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.


Author(s):  
Enrique Rodríguez ◽  
Amanda Radke ◽  
Tory M Hagen ◽  
Pierre U Blier

Abstract The mitochondrial oxidative stress theory of aging (MOSTA) suggests that the organelle’s decay contributes to the aging phenotype via exacerbated oxidative stress, loss of organ coordination and energetics, cellular integrity and activity of the mitochondrial electron transfer system (ETS). Recent advances in understanding the structure of the ETS show that the enzymatic complexes responsible for oxidative phosphorylation are arranged in supramolecular structures called supercomplexes that lose organization during aging. Their exact role and universality among organisms are still under debate. Here, we take advantage of marine bivalves as an aging model to compare the structure of the ETS among species ranging from 28 to 507 years in maximal lifespan. Our results show that regardless of lifespan, the bivalve ETS is arrayed as a set of supercomplexes. However, bivalve species display varying degrees ETS supramolecular organization with the highest supercomplex structures found in A. islandica, the longest-lived of the bivalve species under study. We discuss this comparative model in light of differences in the nature and stoichiometry of these complexes, and highlight the potential link between the complexity of these superstructures and longer lifespans.


2021 ◽  
pp. 106027
Author(s):  
Can Liu ◽  
Ning Ma ◽  
Ziru Guo ◽  
Yijun Zhang ◽  
Jianzhen Zhang ◽  
...  

Plant Science ◽  
2021 ◽  
pp. 111156
Author(s):  
Kinfemichael Geressu Asfaw ◽  
Qiong Liu ◽  
Rose Eghbalian ◽  
Sabine Purper ◽  
Sahar Akaberi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document