scholarly journals Some Properties of the Hermite Polynomials and Their Squares and Generating Functions

Author(s):  
Feng Qi ◽  
Bai-Ni Guo

In the paper, the authors consider the generating functions of the Hermite polynomials and their squares, present explicit formulas for higher order derivatives of the generating functions of the Hermite polynomials and their squares, which can be viewed as ordinary differential equations or derivative polynomials, find differential equations that the generating functions of the Hermite polynomials and their squares satisfy, and derive explicit formulas and recurrence relations for the Hermite polynomials and their squares.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo

Abstract In this paper, by the Faà di Bruno formula and properties of Bell polynomials of the second kind, the authors reconsider the generating functions of Hermite polynomials and their squares, find an explicit formula for higher-order derivatives of the generating function of Hermite polynomials, and derive explicit formulas and recurrence relations for Hermite polynomials and their squares.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


Author(s):  
Tatiana F. Dolgikh

One of the mathematical models describing the behavior of two horizontally infinite adjoining layers of an ideal incompressible liquid under a solid cover moving at different speeds is investigated. At a large difference in the layer velocities, the Kelvin-Helmholtz instability occurs, which leads to a distortion of the interface. At the initial point in time, the interface is not necessarily flat. From a mathematical point of view, the behavior of the liquid layers is described by a system of four quasilinear equations, either hyperbolic or elliptic, in partial derivatives of the first order. Some type shallow water equations are used to construct the model. In the simple version of the model considered in this paper, in the spatially one-dimensional case, the unknowns are the boundary between the liquid layers h(x,t) and the difference in their velocities γ(x,t). The main attention is paid to the case of elliptic equations when |h|<1 and γ>1. An evolutionary Cauchy problem with arbitrary sufficiently smooth initial data is set for the system of equations. The explicit dependence of the Riemann invariants on the initial variables of the problem is indicated. To solve the Cauchy problem formulated in terms of Riemann invariants, a variant of the hodograph method based on a certain conservation law is used. This method allows us to convert a system of two quasilinear partial differential equations of the first order to a single linear partial differential equation of the second order with variable coefficients. For a linear equation, the Riemann-Green function is specified, which is used to construct a two-parameter implicit solution to the original problem. The explicit solution of the problem is constructed on the level lines (isochrons) of the implicit solution by solving a certain Cauchy problem for a system of ordinary differential equations. As a result, the original Cauchy problem in partial derivatives of the first order is transformed to the Cauchy problem for a system of ordinary differential equations, which is solved by numerical methods. Due to the bulkiness of the expression for the Riemann-Green function, some asymptotic approximation of the problem is considered, and the results of calculations, and their analysis are presented.


Author(s):  
Peter E Kloeden ◽  
Arnulf Jentzen

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) with a stochastic process in their vector field. They can be analysed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable, so traditional numerical schemes for ODEs do not achieve their usual order of convergence when applied to RODEs. Nevertheless deterministic calculus can still be used to derive higher order numerical schemes for RODEs via integral versions of implicit Taylor-like expansions. The theory is developed systematically here and applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes.


Sign in / Sign up

Export Citation Format

Share Document