Optimization Strategies for Improved Performance of Nano-Hybrid Wood/Polymer Composites Through Response Surface Methodology

2021 ◽  
Vol 15 (5) ◽  
pp. 648-655
Author(s):  
Yong Wang ◽  
Xia He ◽  
Xi Zhang ◽  
Dong Wang ◽  
Xianjun Li

Response surface methodology (RSM) was used to optimize the preparation conditions of nano-hybrid wood/polymer composites with montmorillonite (MMT) and furfuryl alcohol (FA). The effects of MMT amount, impregnation pressure and impregnation time on weigh percent gain (WPG) of treated samples were evaluated with Box-Behnken design (BBD) of a 3-level-3-factor from RSM. The predictive model for the response was extremely significant (p < 0.01). The determination coefficient (√R2) and the adjusted determination coefficient (VR2) of this model were 0.9651 and 0.9203, respectively. The optimal preparation conditions obtained by RSM design with the assistance of Design Expert were determined as follows: 4 wt% MMT amount, 0.8 MPa impregnation pressure, and 80 min impregnation time. It could be concluded from the SEM images that MMT and FA coated the cell walls and filled cell lumens. Moreover, the thermal stability was also investigated. The effects of preparation conditions were further validated by analyzing the water uptake ratio (WU), modulus of elasticity (MOE) and modulus of rupture (MOR) of the pristine samples and the treated samples prepared under optimized conditions.

2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5141-5155
Author(s):  
Piotr Borysiuk ◽  
Jacek Wikowski ◽  
Krzysztof Krajewski ◽  
Radosław Auriga ◽  
Adrian Skomorucha ◽  
...  

This study investigated the possibility of applying flat-pressed wood-polymer composites in conditions of high humidity. The experiment involved three variants of wood-polymer composite panels 16 mm thick, and 680 kg per m3 density. The wood particles were bonded with polyethylene. The share of polyethylene in the core layer was fixed at 50%, while in the face layers the content was varied (40%, 50%, or 60%). The following parameters were examined: modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), screw holding (SH), thickness swelling (TS), water absorption (WA), susceptibility to drilling and milling, wettability and surface free energy, and resistance to mold. The results were compared to particleboard glued with urea-formaldehyde resin. The wood-polymer composite had lower MOR and MOE values and similar IB and SH values. The panels indicated a remarkably higher water resistance (lower TS and WA values) with good surface wettability and high resistance to mold fungi. Additionally, the composites were easier to machine, e.g. drilling or milling, in comparison to standard particleboards.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhang Yingjie ◽  
Yong Wang ◽  
Wanli Lou ◽  
Dongbin Fan

The optimization of manufacturing conditions for reed straw-based particleboard by soy-based adhesive was performed through response surface methodology. The interactions of various conditions, including adhesive amount, hot-pressing temperature, and hot-pressing time on wet internal bonding strength were investigated. A 3-level-3-factor Box–Behnken design was used to test the optimal preparation conditions of reed straw particleboard. The polynomial regression model for manufacturing conditions had a very significant level ( p < 0.01 ). In addition, the determination coefficient (R2) and the adjust determination coefficient ( R 2 ) of this model were found to be 0.969 and 0.9292, respectively. The conditions optimized by the model were 25% of adhesive amount, 138°C of hot-pressing temperature, and 27 min of hot-pressing time. Under the optimal conditions, validation tests were performed, and the average value of parallel experiments was 0.17 ± 0.02 MPa. Moreover, the thickness swelling of water absorption after soaking and mechanical properties (MOE and MOR) of samples prepared under optimized conditions were further measured, which all met the requirement of Type P6 particleboard. It could provide an efficient method for massive production of reed straw particleboard.


2019 ◽  
Vol 770 (5) ◽  
pp. 62-66
Author(s):  
A.A. ASKADSKII ◽  
◽  
T.A. MATSEEVICH ◽  
V.I. KONDRASHCHENKO ◽  
◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 622
Author(s):  
Krzysztof Wilczyński ◽  
Kamila Buziak ◽  
Adrian Lewandowski ◽  
Andrzej Nastaj ◽  
Krzysztof J. Wilczyński

Wood polymer composites are materials with pseudoplastic and viscoelastic properties. They have yield stress and exhibit slip during flow. Studies on extrusion and rheology, as well as on process modeling of these highly filled materials are limited. Extensive rheological and extrusion modeling studies on the wood polymer composite based on the polypropylene matrix were performed. Viscous and slip flow properties were determined (with Rabinowitsch, Bagley, and Mooney corrections) at broad (extrusion) range of shear rate and temperature, using a high-pressure capillary rheometer. Rheological models of Klein and power-law were used for flow modeling, and Navier model was applied for slip modeling. A novel global computer model of WPC extrusion with slip effects has been developed, and process simulations were performed to compute the extrusion parameters (throughput, power consumption, pressure, temperature, etc.), and to study the effect of the material rheological characteristics on the process flow. Simulations were validated experimentally, and were discussed with respect to both rheological and process modeling aspects. It was concluded that the location of the operating point of extrusion process, which defines the thermo-mechanical process conditions, is fundamentally dependent on the rheological materials characteristics, including slip effects.


2021 ◽  
Vol 5 (6) ◽  
pp. 141
Author(s):  
Imen Elloumi ◽  
Ahmed Koubaa ◽  
Wassim Kharrat ◽  
Chedly Bradai ◽  
Ahmed Elloumi

The characterization of the dielectric properties of wood–polymer composites (WPCs) is essential to understand their interaction with electromagnetic fields and evaluate their potential use for new applications. Thus, dielectric spectroscopy monitored the evolution of the dielectric properties of WPCs over a wide frequency range of 1 MHz to 1 GHz. WPCs were prepared using mixtures of different proportions (40%, 50%, and 60%) of wood and bark fibers from various species, high-density polyethylene, and maleated polyethylene (3%) by a two-step process, extrusion and compression molding. Results indicated that wood fibers modify the resistivity of polyethylene at low frequencies but have no effect at microwave frequencies. Increasing the fiber content increases the composites’ dielectric properties. The fibers’ cellulose content explains the variation in the dielectric properties of composites reinforced with fibers from different wood species. Indeed, composites with high cellulose content show higher dielectric constants.


Sign in / Sign up

Export Citation Format

Share Document