pressing temperature
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
M. Romanenko

Abstract. Obtaining wood with high performance properties on the basis of chemical and mechanical action as a result of optimization of technological processes and the use of temperature exposure. The initial raw material is hardwood (aspen, alder), which are little used in construction and in the production of finishing materials. The condition for obtaining wood with high operating properties (increasing density, strength, reducing water saturation, ensuring the dimensional stability of samples for a long time) is the ability of wood as a natural polymer to change properties under the combined effect of temperature and pressure.


2021 ◽  
Vol 10 (16) ◽  
pp. e140101623101
Author(s):  
Reinan Tiago Fernandes dos Santos ◽  
Wilton Walter Batista

Equiangular Channel Pressing (ECAP) is by far the most promising technique, by the severe plastic deformation (SPD) method, being able to produce large volumes of materials sufficient for practical applications. The ECAP process can be repeated until refining saturation is reached, leading to large amounts of shear strain. The reason behind the exceptional properties obtained in materials processed by ECAP was attributed to the microstructure of the material obtained in this deformation process. This work investigated the ECAP strain variables in the literature in order to analyze the effect of each of these on the microstructure of processed materials. The articles were collected from the following databases: ScienceDirect and the Scientific Electronic Library Online (SciELO) electronic library, as they include national and international literature. Based on the results found, it could be seen that several parameters must be analyzed to deform pure metals and alloys, to refine the microstructure, such as bending angle and channel angle of the strain matrix, number of passes, and pressing temperature. It was possible to verify that changes in these variables configure changes in the microstructure.


2021 ◽  
Vol 903 ◽  
pp. 235-240
Author(s):  
Raimonds Makars ◽  
Daniela Godiņa ◽  
Janis Rizhikovs ◽  
Aigars Paze ◽  
Ramunas Tupciauskas ◽  
...  

Silver birch (Betula pendula) outer bark suberin can be used as a raw material to make an adhesive for particleboards (PBs). It is a promising formaldehyde-free alternative to traditional synthetic resins. However, the adhesive is acidic, which can catalyse furfural (FUR) formation from xylans in wood particles that are used for the preparation of PBs. FUR being a volatile organic compound can be emitted from the PBs and exposure to it can have harmful effects on humans. In the scope of this study, the effects on technological parameters (wet adhesive pH: 3, 6 and 9), glycerol as an additive to adhesive and hot-pressing temperature (180...230 °C) were investigated on the FUR formation in PBs. The FUR content was determined with high-performance liquid chromatography-ultraviolet spectroscopy system from the extracts of milled PBs. Mechanical properties (modulus of elasticity, bending strength, and thickness swelling) of the PBs were also studied. When using an adhesive with a pH 6 at hot-pressing temperature 230 °C with no glycerol added, it was possible to obtain PBs that satisfied the requirements of EN 312 P2 (boards for interior fitments). The FUR yield of these boards were more than 6 times lower than for the PBs pressed at 230 °C with a wet adhesive pH value 3.


2021 ◽  
Vol 56 (4) ◽  
pp. 869-878
Author(s):  
Sutrisno ◽  
Eka Mulya Alamsyah ◽  
Atmawi Darwis ◽  
Alia Salima Ahmad ◽  
Shigehiko Suzuki ◽  
...  

The article describes a new idea related to the use of wood bark powder as a filler material in the production of wood plastic composites using flat-pressed method, based on its thermal stability and abundant availability, enabling replacing wood powder, which has been widely used. This research aims to study the effect of temperature on the physical, mechanical, and morphological properties of flat-pressed wood plastic composites made from Gmelina arborea bark and recycled polypropylene. A 40:60 mesh (5% moisture content) of G. arborea bark powder was mixed with recycled polypropylene (RPP) pellets with a weight ratio of 40:60 and a maleic anhydride (MAH) modifier as much as 5% of the weight of the RPP was added. Mixing the ingredients is done in a rotating blender for 15 minutes at a speed of 80 rpm until homogeneous. The mixture was heated at 175oC until the RPP pellets were completely melted and then cooled at room temperature. After that, the material mixture was made into powder and filtered, and then moulded in a steel plate mould at temperatures of 160, 165, and 170oC under a pressure of 30 kg/cm2 for 4 minutes with a target density of 1 g/cm3. Physical properties including density, moisture content, water absorption, thickness swelling, and volume shrinkage according to ASTM D570 standard were determined. Mechanical properties, such as modulus of elasticity (MOE) and modulus of rapture (MOR), referring to ASTM D7031 standard, and tensile strength parallel to panel length, referring to ASTM D638 standard, were also evaluated. In addition, composite morphology was also studied using scanning electron microscopy (SEM). The results showed that the increasing of pressing temperature had a significant effect on the improvement of moisture content, water absorption, thickness swelling, volume shrinkage, and MOR. MOR value increased by 34.12% when the pressing temperature increased form 160oC up to 170oC. Our method allows improving the physical and mechanical properties of wood bark plastic composites based on a pressing temperature of 170oC.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2485
Author(s):  
Amanda Mattsson ◽  
Tove Joelsson ◽  
Arttu Miettinen ◽  
Jukka A. Ketoja ◽  
Gunilla Pettersson ◽  
...  

Broader use of bio-based fibres in packaging becomes possible when the mechanical properties of fibre materials exceed those of conventional paperboard. Hot-pressing provides an efficient method to improve both the wet and dry strength of lignin-containing paper webs. Here we study varied pressing conditions for webs formed with thermomechanical pulp (TMP). The results are compared against similar data for a wide range of other fibre types. In addition to standard strength and structural measurements, we characterise the induced structural changes with X-ray microtomography and scanning electron microscopy. The wet strength generally increases monotonously up to a very high pressing temperature of 270 °C. The stronger bonding of wet fibres can be explained by the inter-diffusion of lignin macromolecules with an activation energy around 26 kJ mol−1 after lignin softening. The associated exponential acceleration of diffusion with temperature dominates over other factors such as process dynamics or final material density in setting wet strength. The optimum pressing temperature for dry strength is generally lower, around 200 °C, beyond which hemicellulose degradation begins. By varying the solids content prior to hot-pressing for the TMP sheets, the highest wet strength is achieved for the completely dry web, while no strong correlation was observed for the dry strength.


2021 ◽  
Vol 71 (3) ◽  
pp. 224-232
Author(s):  
Xia Zheng ◽  
Peiqi Li ◽  
Yunfei Lin ◽  
Xingong Li

Abstract Flame-retardant reed inorganic particleboard was prepared by hot-pressing with reed particles as a reinforcing material and using magnesite cement as an inorganic adhesive. The effects of inorganic sizing amount, density, and hot-pressing temperature and time on the properties of reed inorganic particleboard were investigated by orthogonal testing. Particleboard properties were tested and characterized by means of a universal mechanical testing machine, scanning electronic microscopy (SEM), X-ray diffraction (XRD), and cone calorimetry. The results showed that the mechanical properties of particleboard prepared under conditions of 60 percent sizing capacity, 100°C hot-pressing temperature, 15 minutes hot-pressing time, and 1.2 g/cm3 density were the best, reaching the national standard for cement particleboard. At 60 percent sizing, the characteristic peak value of inorganic adhesive hydrate crystal phase was the largest, the crystallization area dense and orderly, and the coating effect on shavings good; these attributes confirmed the trend of mechanical properties of reed shavings board increasing with sizing amount. Thus, the sizing amount had a significant influence on flame retardancy and smoke suppression performance of this particleboard. With an increased application amount, the heat release and total heat release rates of the particleboard and total smoke generation rate showed decreasing trends. Additionally, when the ignition time was delayed, the flame retardancy and smoke suppression performance of the particleboard was enhanced.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4171-4199
Author(s):  
Eva Oktoberyani Christy ◽  
Soemarno ◽  
Sumardi Hadi Sumarlan ◽  
Agoes Soehardjono

This study investigated the effects of the pressing temperature on the mechanical and physical properties of binderless bark particleboard made from Gelam bark waste and the improvement of those properties. In addition, the thermal insulation properties of the particleboard were determined. Four different temperatures (140 °C, 160 °C, 180 °C, and 200 °C) were used to make single-layer binderless bark particleboard with a target density of less than or equal to 0.59 g/cm3. Results revealed that the pressing temperature affected the mechanical properties (modulus of rupture, modulus of elasticity, and tensile strength perpendicular to panel surface), which increased as the temperature increased, and the physical properties (thickness swelling and water absorption), which decreased as the temperature increased. Based on the Tukey test, increasing the temperature from 180 to 200 °C did not significantly affect the mechanical or physical properties, except for the tensile strength perpendicular to panel surface. None of the mechanical properties met SNI standard 03-2105-2006 (2006); however, the 12% maximum thickness swelling requirement was met for binderless bark particleboard hot-pressed at 200 °C. Binderless bark particleboard hot-pressed at 200 °C had high water resistance, regardless of its low strength, and a thermal conductivity value of 0.14 W/m∙K.


Sign in / Sign up

Export Citation Format

Share Document