ginsenoside re
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 48)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 123 ◽  
pp. 107159
Author(s):  
Mi Yan ◽  
Yingyi Wang ◽  
Xue Shen ◽  
Shuyue Dong ◽  
Mengxue Diao ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yun Huang ◽  
Lijian Cui ◽  
Hongchao Yang ◽  
Ning Chen ◽  
Huishan Guo ◽  
...  

Panax notoginseng saponins (PNS) have been used to treat cardiovascular diseases for hundreds of years in China. Lysozyme can bind to exogenous compounds and promote their activity. Nevertheless, knowledge of whether there is a synergistic role between lysozyme and PNS is far from sufficient. In this study, we show that the mixture of PNS and lysozyme synergistically inhibited platelet derived growth factor BB (PDGF-BB)-induced vascular smooth muscle cell (VSMC) viability, and in the five main components of PNS, GS-Re, but not GS-Rb1, NG-R1, GS-Rg1, or GS-Rd, reduced VSMC viability by combined application with lysozyme. Next, the supramolecular complexes formed by GS-Re and lysozyme were detected by mass spectrometry, and the binding ability increased with the concentration ratio of GS-Re to lysozyme from 4:1 to 12:1. In the supramolecular complexes, the relative contents of α-helix of lysozyme were increased, which was beneficial for stabilizing the structure of lysozyme. The 12:1 mixture of GS-Re and lysozyme (12.8 μmol/L GS-Re+1.067 μmol/L lysozyme) repressed PDGF-BB-induced VSMC viability, proliferation, and migration, which were associated with the upregulated differentiated markers and downregulated dedifferentiated markers. Finally, in CaCl2-induced rodent abdominal aortic aneurysm (AAA) models, we found that the 12:1 mixture of GS-Re and lysozyme slowed down AAA progression and reversed phenotype transformation of VSMCs. Thus, Gs-Re combined with a small amount of lysozyme may provide a novel therapeutic strategy for vascular remodeling-associated cardiovascular diseases.


Author(s):  
Jingxian Gao ◽  
Xianli Meng ◽  
Bayin Zabu ◽  
Yi Zhang ◽  
Siqinbilig Wu ◽  
...  

Aims: To identify more effective ginsenoside for type 2 diabetes (T2D) and clarify whether the ginsenoside characterizing estrogenic multi-targeted antidiabetic effects. Study Design: Identifying more effective ginsenoside through preclinical evaluation of antidiabetic effects of representative ginsenosides with T2D rat model, and further test pharmacological mechanism underlying the potent antidiabetic effects of the ginsenoside in the same model. Place and Duration of Study: Key laboratory for Pharmacy, Inner Mongolia Medical University, March 2018 to November 2020. Methodology: Used a total of 240 female adult rats. Rat model of T2D induced by high-fat diet fed and streptozotocin. Five tapes of representative ginsenosides (Rb1, Rd, Rg3, Re, Rg1) administrated at low (20 mg/kg daily) and high (40 mg/ kg daily) doses to T2D rats with orally for 4 weeks. Detect testing indexes with biochemical, histological, Quantitative Real-Time PCR, and western blots analysis. Results: Ginsenoside Re (Re), very significantly lowered blood glucose (P<0.01), lipids (P<0.001), free fatty acid (P<0.001), and glucagon (P<0.01) levels, markedly improved impaired insulin sensitivity (P<0.01), ameliorated oxidative stress (P<0.01) and inflammation (P<0.01) in T2D rats, exhibited potent antidiabetic effects. Moreover, Re, phosphorylate serine/threonine kinase (Akt) (P<0.01) and endothelial nitric oxide synthase (eNOS) (P<0.01), up regulates B-cell lymphoma-2 (P<0.01) and insulin gene expression (P<0.01), down regulates glucagon gene expression(P<0.01), reverse impaired glucagon-like peptide 1 (P<0.01); exhibits multi-targeted effects; these effects of Re were inhibited by estrogen receptor (ER) inhibitor (ICI-182,780) (P<0.01). Functionally, the antidiabetic effects of Re were sequentially inhibited by inhibitor of ER, Akt, and eNOS, respectively (P<0.01). Conclusion: These findings, revealed a novel pharmacological property of Re that characterized in multi-targeted potent antidiabetic effects mediated by ER/Akt/eNOS/NO signaling pathway, provide the first evidence for the potential use of Re, as a multi-targeted therapeutic for T2D, particularly, a novel candidate for replacement of estrogen therapy and NO therapy in diabetes.


Author(s):  
Jinghui Sun ◽  
Ru Wang ◽  
Tiantian Chao ◽  
Jun Peng ◽  
Chenglong Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7227
Author(s):  
Hui Li ◽  
Guolei Zhang ◽  
Wei Wang ◽  
Changbao Chen ◽  
Lili Jiao ◽  
...  

This work aimed at improving the water solubility of Ginsenoside (G)-Re by forming an inclusion complex. The solubility parameters of G-Re in alpha (α), beta (β), and gamma (γ) cyclodextrin (CD) were investigated. The phase solubility profiles were all classified as AL-type that indicated the 1:1 stoichiometric relationship with the stability constants Ks which were 22 M−1 (α-CD), 612 M−1 (β-CD), and 14,410 M−1 (γ-CD), respectively. Molecular docking studies confirmed the results of phase solubility with the binding energy of −4.7 (α-CD), −5.10 (β-CD), and −6.70 (γ-CD) kcal/mol, respectively. The inclusion complex (IC) of G-Re was prepared with γ-CD via the water-stirring method followed by freeze-drying. The successful preparation of IC was confirmed by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In-vivo absorption studies were carried out by LC-MS/MS. Dissolution rate of G-Re was increased 9.27 times after inclusion, and the peak blood concentration was 2.7-fold higher than that of pure G-Re powder. The relative bioavailability calculated from the ratio of Area under the curve AUC0–∞ of the inclusion to pure G-Re powder was 171%. This study offers the first report that describes G-Re’s inclusion into γ-CD, and explored the inclusion complex’s mechanism at the molecular level. The results indicated that the solubility could be significantly improved as well as the bioavailability, implying γ-CD was a very suitable inclusion host for complex preparation of G-Re.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6657
Author(s):  
Heyu Wang ◽  
Yaran Teng ◽  
Shinan Li ◽  
Ying Li ◽  
Hui Li ◽  
...  

Panax ginseng was employed in the treatment of “Xiao-Ke” symptom, which nowadays known as diabetes mellitus, in traditional Chinese medicine for more than a thousand years. Ginsenoside Re was the major pharmacologic ingredient found abundantly in ginseng. However, the anti-diabetic of Ginsenoside Re and its underlying mechanism in metabolic level are still unclear. Serum and urine metabolomic method was carried out to investigate the anti-diabetic pharmacological effects and the potential mechanism of Ginsenoside Re on high-fat diet combined streptozotocin-induced type 2 diabetes mellitus (T2DM) rats based on ultra-high-performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). Serum and urine samples were collected from the control group (CON), T2DM group, metformin (MET) treatment group, and ginsenoside Re treatment group after intervention. The biochemical parameters of serum were firstly analyzed. The endogenous metabolites in serum and urine were detected by UHPLC-MS. The potential metabolites were screened by multivariate statistical analysis and identified by accurate mass measurement, MS/MS, and metabolite databases. The anti-diabetic-related metabolites were analyzed by KEGG metabolic pathway, and its potential mechanism was discussed. The treatment of ginsenoside Re significantly reduced the blood glucose and serum lipid level improved the oxidative stress caused by T2DM. Biochemical parameters (urea nitrogen, uric acid) showed that ginsenoside Re could improve renal function in T2DM rats. Respective 2 and 6 differential metabolites were found and identified in serum and urine of ginsenoside Re compared with T2DM group and enriched in KEGG pathway. Metabolic pathways analysis indicated that the differential metabolites related to T2DM were mainly involved in arachidonic acid metabolism, Vitamin B6, steroid hormone biosynthesis, and bile secretion metabolic pathways. This study verified the anti-diabetic and anti-oxidation effects of ginsenoside Re, elaborated that ginsenoside Re has a good regulation of the metabolic disorder in T2DM rats, which could promote insulin secretion, stimulated cannabinoid type 1 receptor (CB1), and CaMKK β to activate AMPK signaling pathway, inhibited insulin resistance, and improved blood glucose uptake and diabetic nephropathy, so as to play the role of anti-diabetic.


2021 ◽  
Author(s):  
Yujie Chen ◽  
Rongfa Guan ◽  
Haizhi Huang ◽  
Hao Zhong ◽  
Yujing Sun ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yichuan Jiang ◽  
Dayun Sui ◽  
Min Li ◽  
Huali Xu ◽  
Xiaofeng Yu ◽  
...  

Ginsenoside Re (Re) is the main component of “Zhenyuan Capsule” (ZYC), which was wildly used in clinic in China for adjunctive treatment of coronary heart disease (CHD) and type II diabetes (T2DM). Nonalcoholic fatty liver disease (NAFLD) is one of the most important complications of T2DM, as well as an important risk factor of CHD. The aim of the present study was to investigate the effects of Re on NAFLD in db/db mice, one of the most recognized gene deficient animal models on T2DM. Sixteen db/db mice and sixteen wild-type mice were divided into four groups and orally administered Re or placebo in equal volume. According to the results, Re showed no obvious effect on blood glucose, lipids, or body weight of db/db mice. Histology pictures of hepatic tissue showed that Re did not improve steatosis, too. However, some evidence suggested that hepatic injury in db/db mice was attenuated by Re administering. Collagen deposition and aminotransferase elevation were significantly downregulated in the DB + Re group compared to those in the DB Group. The mechanisms of the protect effects of Re represented in db/db mice with NAFLD might be inhibiting oxidative stress and the reupregulation of peroxisome proliferator-activated receptor γ (pparγ) expression. The results of this study indicated that ZYC might be able to help T2DM patients with NAFLD to control the progress of NAFLD as an alternation of thiazolidinediones, synthetic agonists of PPARγ, whose side effects and adverse events should not be ignored.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shufang Chu ◽  
Deliang Liu ◽  
Hengxia Zhao ◽  
Mumin Shao ◽  
Xuemei Liu ◽  
...  

Context. Zishen Jiangtang Pill (ZJP) is a Chinese herbal compound, which has a positive therapeutic effect on diabetic osteoporosis (DOP) by regulating glucose metabolism and bone metabolism. However, its regulatory role and mechanism are still unclear. Objective. To explore the effect and mechanism of ZJP on DOP rats by proteomic analysis. Materials and Methods. After the establishment of diabetes model by Streptozocin (STZ, 60 mg/kg), 40 Wistar rats were equally divided into normal group, model group (diabetic rats), high-dose group (3.0 g/kg/d ZJP), and low-dose group (1.5 g/kg/d ZJP) and received treatment for 3 months. Histological changes in bone and pancreas tissues were observed by hematoxylin and eosin staining, electron microscopy, and immunofluorescence. Proteomic and bioinformatic analyses were performed to identify the differentially expressed proteins. The fingerprint and active ingredients of ZJP were identified via high-performance liquid chromatography (HPLC). Results. Compared with the model group, ZJP could rescue the weight, fasting blood glucose, and fasting insulin of rats in both high-dose and low-dose group. ZJP could also improve the microstructures of pancreatic islet cells, bone mass, and trabecular and marrow cavities in DOP rats. Bioinformatic analysis suggested that ZJP might influence DOP via multiple pathways, mainly including ribosomes, vitamin digestion and absorption, and fat digestion and absorption. The primary active ingredients, including notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, icariin, and ginsenoside Rb1, were detected. Conclusion. ZJP could significantly improve the histomorphology and ultrastructure of bone and islets tissues and might serve as an effective alternative medicine for the treatment of DOP.


2021 ◽  
Vol 22 (18) ◽  
pp. 9668
Author(s):  
Xiaoxuan Yu ◽  
Hui Li ◽  
Dongfa Lin ◽  
Weizhuo Guo ◽  
Zhihao Xu ◽  
...  

Panax ginseng is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG), a mixture of the primary active ginsenosides from Panax ginseng, on the lifespan of Caenorhabditis elegans (C. elegans). We found that TG extended the lifespan of C. elegans and reduced lipofuscin accumulation. Moreover, TG increased the survival of C. elegans in response to heat and oxidative stress via the reduction of ROS. Next, we used RNA-seq to fully define the antiaging mechanism(s) of TG. The KEGG pathway analysis showed that TG can prolong the lifespan and is involved in the longevity regulating pathway. qPCR showed that TG upregulated the expression of nrh-80, daf-12, daf-16, hsf-1 and their downstream genes. TG also reduced the fat accumulation and promoted lipid metabolism. Moreover, TG failed to extend the lifespan of daf-16 and hsf-1 mutants, highlighting their role in the antiaging effects of TG in C. elegans. The four main constitution of TG were then confirmed by HPLC and included ginsenoside Re, Rg1, Rg2 and Rd. Of the ginsenosides, only ginsenoside Rd prolonged the lifespan of C. elegans to levels comparable to TG. These findings provided mechanistic insight into the antiaging effects of ginsenoside in C. elegans.


Sign in / Sign up

Export Citation Format

Share Document