Cooperative Control Strategy of Two-Way Hydraulic Cylinder of Hydraulic Rolling Shear Based on Cross-Coupling Error

2016 ◽  
Vol 13 (2) ◽  
pp. 1399-1405
Author(s):  
Hongjie Li ◽  
Shuai Wu ◽  
Chi Zhang ◽  
Zhibing Chu
2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881739
Author(s):  
Dongping He ◽  
Tao Wang ◽  
Jun Wang ◽  
Zhongkai Ren ◽  
Xiangyu Gao

The characteristics of electro-hydraulic servo system of full-hydraulic leveler are high speed, large inertia, high frequency response, and multi-degree of freedom. In order to improve the degree of automation of full-hydraulic leveler and achieve the simultaneous control between position and pressure, the position–pressure cooperative control strategy is presented in the article. In the working process, the dynamic working pressure signal of the hydraulic cylinder is turned into a real-time position signal by the pressure–position conversion gain and then compensates the converted signal into the position closed loop. Meanwhile, the pressure signal of the rear cavity of the hydraulic cylinder is fed back to the input of the proportional relief valve at the pump source, and then the system work pressure changes quickly according to the different thickness. In this article, the mathematical model of position–pressure cooperative control of hydraulic straightening machine is established. The simulation results in AMESim software verify the correctness of the control strategy. Finally, the feasibility and practicability of the control strategy are verified by the field prototype of 11-roller full-hydraulic leveler. The control strategy provides the theoretical basis for designing the electro-hydraulic servo system.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 581 ◽  
Author(s):  
Quan Zhang ◽  
Jianguo Zhao ◽  
Xin Shen ◽  
Qing Xiao ◽  
Jun Huang ◽  
...  

A novel decoupled XY compliant micro-positioning stage, based on a bridge-type amplification mechanism and parallelogram mechanisms, is designed in this paper. Analytical models of the bridge-type amplification mechanism and parallelogram mechanisms are developed by Castigliano’s second theorem and a Beam constrained model. The amplification ratio, input stiffness, and output stiffness of the stage are further derived, based on the proposed model. In order to verify the theoretical analysis, the finite element method (FEM) is used for simulation and modal analysis, and the simulation results indicate that the errors of the amplification ratio, input stiffness, and output stiffness of the stage between the proposed model and the FEM results are 2.34%, 3.87%, and 2.66%, respectively. Modal analysis results show that the fundamental natural frequency is 44 Hz, and the maximum error between the theoretical model and the FEM is less than 4%, which further validates the proposed modeling method. Finally, the prototype is fabricated to test the amplification ratio, cross-coupling error, and workspace. The experimental results demonstrate that the stage has a relatively large workspace, of 346.1 μm × 357.2 μm, with corresponding amplification ratios of 5.39 in the X-axis and 5.51 in the Y-axis, while the cross-coupling error is less than 1.5%.


2005 ◽  
Author(s):  
Nelson Arzola ◽  
Rafael Goytisolo ◽  
Lester D. Suarez ◽  
Ariel Fernandez

In this paper, the distribution of pressure on the bagasse layer in the sugar cane mills and an automatic regulation proposal to increase the efficiency in the extraction of sugar cane juice is approached. An analysis that considers the top shaft-roller as a beam on elastic foundation is carried out. It is possible to determine the pressure distribution on the bagasse layer and the mill bearing reactions. The behavior of the bagasse layer reaction is analyzed for different hydraulic pressures in each side of the mill; being demonstrated, an optimal relationship of pressures to achieve a uniform compression on the bagasse layer. The optimal hydraulic pressure rate is calculated with the help of the outlined method. Finally, once this pressure relation is known, a control strategy is developed for each hydraulic cylinder.


2021 ◽  
Vol 51 (1) ◽  
pp. 267-282 ◽  
Author(s):  
Bo Zhang ◽  
Chunxia Dou ◽  
Dong Yue ◽  
Zhanqiang Zhang ◽  
Tengfei Zhang

2012 ◽  
Vol 468-471 ◽  
pp. 1414-1420 ◽  
Author(s):  
Jian Wei Mi ◽  
Hong Bao ◽  
Jing Li Du

Considering the special characteristics of the redundant parallel manipulator, with emphasis on the variable of structure, relatively small workspace and the strong coupling relationship among arms,a synchronization control strategy is presented in this paper. Since in the feedforward ,the inertial and the coriolis matrix are designed constant according to relatively small workspace, position measurement of the endeffector in plane is ignored. Synchronization error and coupling error are introduced to reject the model errors of inertial and coriolis matrix as stated above. Using the method, the errors of driving arms may be reduced, as well as synchronization performance among axes improves. The stability of the controllers was proved by Lyapunov. Finally, experimental results show the feasibility.


Sign in / Sign up

Export Citation Format

Share Document