Data Partitioning and Reduplication for Providing Integrity to Data in the Cloud

2020 ◽  
Vol 17 (9) ◽  
pp. 4070-4074
Author(s):  
H. M. Nishkala ◽  
S. H. Anu ◽  
D. A. Bindushree ◽  
S. L. Manoj

Cloud Computing is a boon to the field of information and technology. The two major elements of client worries are Data security and Privacy Protection. Data may be revised and improved when client stores the information in the cloud so there might be danger of data loss. Therefore client information is moved to the data hub which cannot be controlled by the clients. Hence high safety efforts are required to secure data inside the cloud. Here data is divided into fragments and they are converted into encrypted file. This encrypted file is issued to arbitrarily chosen cloud service providers by the cloud data owners. Even after the successful attack, attackers do not get the meaning full information. If cloud data clients access to get any document that relating to encrypted file is regenerated from the fragments and clients must download it. When the applicant coordinates the strategy with the original details, then only file can be decoded. Therefore it demonstrates that prospective strategy improves the data integrity and confidentiality.

Present days, huge amount of data stored with cloud service providers. The Third- party auditors (TPAs), with support of cryptography, are frequently utilized to prove this data. Auditing will be capability for cloud clients to prove the existence &functioning of their supplier's security measures. Authentication is done by using username and password. The important point in authentication is to protect data from the access of unauthorized people. The proposed scheme is Enhanced RSA (ERSA) Algorithm. This paper presents solution to enhance the security and privacy to stored data in cloud. Result demonstrates that this scheme can progress the security of data that stored in cloud


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinlong Huang ◽  
Yue He ◽  
Wei Yue ◽  
Yixian Yang

Data collaboration in cloud computing is more and more popular nowadays, and proxy deployment schemes are employed to realize cross-cloud data collaboration. However, data security and privacy are the most serious issues that would raise great concerns from users when they adopt cloud systems to handle data collaboration. Different cryptographic techniques are deployed in different cloud service providers, which makes cross-cloud data collaboration to be a deeper challenge. In this paper, we propose an adaptive secure cross-cloud data collaboration scheme with identity-based cryptography (IBC) and proxy re-encryption (PRE) techniques. We first present a secure cross-cloud data collaboration framework, which protects data confidentiality with IBC technique and transfers the collaborated data in an encrypted form by deploying a proxy close to the clouds. We then provide an adaptive conditional PRE protocol with the designed full identity-based broadcast conditional PRE algorithm, which can achieve flexible and conditional data re-encryption among ciphertexts encrypted in identity-based encryption manner and ciphertexts encrypted in identity-based broadcast encryption manner. The extensive analysis and experimental evaluations demonstrate the well security and performance of our scheme, which meets the secure data collaboration requirements in cross-cloud scenarios.


2014 ◽  
Vol 701-702 ◽  
pp. 1106-1111 ◽  
Author(s):  
Xin Zheng Zhang ◽  
Ya Juan Zhang

As information and processes are migrating to the cloud, Cloud Computing is drastically changing IT professionals’ working environment. Cloud Computing solves many problems of conventional computing. However, the new technology has also created new challenges such as data security, data ownership and trans-code data storage. We discussed about Cloud computing security issues, mechanism, challenges that Cloud service providers and consumers face during Cloud engineering. Based on concerning of security issues and challenges, we proposed several encryption algorithms to make cloud data secure and invulnerable. We made comparisons among DES, AES, RSA and ECC algorithms to find combinatorial optimization solutions, which fit Cloud environment well for making cloud data secure and not to be hacked by attackers.


The tradition of moving applications, data to be consumed by the applications and the data generated by the applications is increasing and the increase is due to the advantages of cloud computing. The advantages of cloud computing are catered to the application owners, application consumers and at the same time to the cloud datacentre owners or the cloud service providers also. Since IT tasks are vital for business progression, it for the most part incorporates repetitive or reinforcement segments and framework for power supply, data correspondences associations, natural controls and different security gadgets. An extensive data centre is a mechanical scale task utilizing as much power as a community. The primary advantage of pushing the applications on the cloud-based data centres are low infrastructure maintenance with significant cost reduction for the application owners and the high profitability for the data centre cloud service providers. During the application migration to the cloud data centres, the data and few components of the application become exposed to certain users. Also, the applications, which are hosted on the cloud data centres must comply with the certain standards for being accepted by various application consumers. In order to achieve the standard certifications, the applications and the data must be audited by various auditing companies. Few of the cases, the auditors are hired by the data centre owners and few of times, the auditors are engaged by application consumers. Nonetheless, in both situations, the auditors are third party and the risk of exposing business logics in the applications and the data always persists. Nevertheless, the auditor being a third-party user, the data exposure is a high risk. Also, in a data centre environment, it is highly difficult to ensure isolation of the data from different auditors, who may not be have the right to audit the data. Significant number of researches have attempted to provide a generic solution to this problem. However, the solutions are highly criticized by the research community for making generic assumptions during the permission verification process. Henceforth, this work produces a novel machine learning based algorithm to assign or grant audit access permissions to specific auditors in a random situation without other approvals based on the characteristics of the virtual machine, in which the application and the data is deployed, and the auditing user entity. The results of the proposed algorithm are highly satisfactory and demonstrates nearly 99% accuracy on data characteristics analysis, nearly 98% accuracy on user characteristics analysis and 100% accuracy on secure auditor selection process


2020 ◽  
Vol 8 (5) ◽  
pp. 1627-1631

Confidentiality, Privacy and Protection of data (CPPD) are the major challenges in the cloud environment for cloud users such as industrials and organizations. Hence major companies are loath to migrate to cloud and also still using the private cloud because of lock in CPPD of cloud. Cloud Service Providers (CSP) are unable to elucidate strength of the storage and services due to lack of data security. To solve the above issue, we trust, algorithms are not the only solution for data security. In this regards, we suggest to change the architecture and develop a new mechanisms. In this paper, we are proposed two thinks. First is move to single cloud architecture to multiple cloud architecture and second is develop an innovative algorithm. And one more think also considered and proposed an inimitable mechanism to use an innovative algorithm in the multi cloud architecture for improving CPPD.


The widespread adoption of multi-cloud in enterprises is one of the root causes of cost-effectiveness. Cloud service providers reduce storage costs through advanced data de-duplication, which also provides vulnerabilities for attackers. Traditional approaches to authentication and data security for a single cloud need to be upgraded to be best suitable for cloud-to-cloud data migration security in order to mitigate the impact of dictionary and template attacks on authentication and data integrity, respectively. This paper proposes a scheme of user layer authentication along with lightweight cryptography. The proposed simulates its mathematical model to analyze the behavioral pattern of time-complexity of data security along with user auth protection. The performance pattern validates the model for scalability and reliability against both authentication and data integrity.


2017 ◽  
Vol 5 (2) ◽  
pp. 97-106
Author(s):  
VNS Surendra Chimakurthi

Many firms are seeing the benefits of moving to the cloud. For the sake of their customers' data, cloud service providers are required by law to maintain the highest levels of data security and privacy. Most cloud service providers employ a patchwork of security and privacy safeguards while industry standards are being created. The upshot is that customers of cloud services are unsure whether or not the security protections supplied by these services are enough to meet their specific security and compliance requirements. In this article, we have discussed the many threats cloud users face and emphasized the compliance frameworks and security processes that should be in place to minimize the risk. To categorize cloud security measures, risks, and compliance requirements, we developed an ontology. We needed to design software to identify the high-level policy rules that must be applied in response to each danger as part of this initiative. Additionally, the program provides a list of cloud service providers that now satisfy specific security requirements. Even if they aren't familiar with the underlying technology, cloud users may utilize our system to build up their security policy and identify compatible providers.


Sign in / Sign up

Export Citation Format

Share Document