scholarly journals Adaptive Secure Cross-Cloud Data Collaboration with Identity-Based Cryptography and Conditional Proxy Re-Encryption

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinlong Huang ◽  
Yue He ◽  
Wei Yue ◽  
Yixian Yang

Data collaboration in cloud computing is more and more popular nowadays, and proxy deployment schemes are employed to realize cross-cloud data collaboration. However, data security and privacy are the most serious issues that would raise great concerns from users when they adopt cloud systems to handle data collaboration. Different cryptographic techniques are deployed in different cloud service providers, which makes cross-cloud data collaboration to be a deeper challenge. In this paper, we propose an adaptive secure cross-cloud data collaboration scheme with identity-based cryptography (IBC) and proxy re-encryption (PRE) techniques. We first present a secure cross-cloud data collaboration framework, which protects data confidentiality with IBC technique and transfers the collaborated data in an encrypted form by deploying a proxy close to the clouds. We then provide an adaptive conditional PRE protocol with the designed full identity-based broadcast conditional PRE algorithm, which can achieve flexible and conditional data re-encryption among ciphertexts encrypted in identity-based encryption manner and ciphertexts encrypted in identity-based broadcast encryption manner. The extensive analysis and experimental evaluations demonstrate the well security and performance of our scheme, which meets the secure data collaboration requirements in cross-cloud scenarios.

2020 ◽  
Vol 17 (9) ◽  
pp. 4070-4074
Author(s):  
H. M. Nishkala ◽  
S. H. Anu ◽  
D. A. Bindushree ◽  
S. L. Manoj

Cloud Computing is a boon to the field of information and technology. The two major elements of client worries are Data security and Privacy Protection. Data may be revised and improved when client stores the information in the cloud so there might be danger of data loss. Therefore client information is moved to the data hub which cannot be controlled by the clients. Hence high safety efforts are required to secure data inside the cloud. Here data is divided into fragments and they are converted into encrypted file. This encrypted file is issued to arbitrarily chosen cloud service providers by the cloud data owners. Even after the successful attack, attackers do not get the meaning full information. If cloud data clients access to get any document that relating to encrypted file is regenerated from the fragments and clients must download it. When the applicant coordinates the strategy with the original details, then only file can be decoded. Therefore it demonstrates that prospective strategy improves the data integrity and confidentiality.


Cloud computing is proving to be a beneficial model for all types of users as it enables anyone to share and make use of the available pool of resources and get the desired services online. It reduces the operational and maintenance costs since the user needs to pay for what he has used. Databases and applications are moved to the cloud and stored in large data stores of the cloud service provider which may be insecure or untrustworthy. End users want to know the location of data being stored and who have control over the information apart from the owners. They particularly want the data to be secured from unintentional or illegal access even by the service providers. As the data are stored in geographically dispersed area, the data is vulnerable. The most important concern is that data confidentiality is to be attained while data is stored or in transit. To provide confidentiality, initially cryptographic approaches were used that disclose the keys needed for decryption only to the authorized users. But in the cloud, the adopted encryption schemes should support fine-grained access control, high performance, scalability as well as full delegation. In order to share valuable data confidentially on the cloud in a secured way, various encryption techniques are available starting from Identity-Based Encryption, Attribute-Based Encryption, Hierarchical Attribute-Based Encryption, Identity-Based Broadcast Encryption, Searchable Encryption, Homomorphic Encryption, Fully Homomorphic Encryption and so on. This paper analyses some of the recent and popular encryption techniques and discusses the issues related to them.


2019 ◽  
Vol 9 (4) ◽  
pp. 21-36 ◽  
Author(s):  
Shweta Kaushik ◽  
Charu Gandhi

Cloud computing has emerged as a new promising field in the internet. It can be thought as a new architecture for the next generation of IT enterprises. It allows the user to access virtualized resources over the internet which can be dynamically scaled. Here, the owner's data is stored at a distributed data centre, which are responsible for its security constraints such as access control and data transmission to user. As the owner does not have physical access on their own data, the data centres are not trustworthy, this resulted in the cloud data security demand. Today, many cloud service providers (CSPs) are using the asymmetric and public key cryptography (PKG) for authenticating and data security purposes using the digital identity of the user. To this end, this article focuses on cloud data storage and its delivery to authorized user. For this purpose, a hierarchal identity-based cryptography method is used for data security and checking the data integrity, in order to make sure that there is no alteration or modification done by a malicious attacker or CSP for its own benefit.


2013 ◽  
Vol 477-478 ◽  
pp. 1487-1490
Author(s):  
Jing Wu ◽  
Feng Zhi Zhao ◽  
Yu Dan Dong

The cloud data security is the primary concern users, especially in multi-tenant cloud environments residual data can cause data leakage problem, but most of the cloud service providers do not provide data processing residual solution. This study was designed HDFS multi-level security mechanisms and data destruction and data based on bidirectional heartbeat overwrite technology combined with the data from the destruction mechanism to ensure effective destruction of data under the premise of safety requirements and performance can be achieved demand balance.


Author(s):  
VINITHA S P ◽  
GURUPRASAD E

Cloud computing has been envisioned as the next generation architecture of IT enterprise. It moves the application software and databases to the centralized large data centers where management of data and services may not be fully trustworthy. This unique paradigm brings out many new security challenges like, maintaining correctness and integrity of data in cloud. Integrity of cloud data may be lost due to unauthorized access, modification or deletion of data. Lacking of availability of data may be due to the cloud service providers (CSP), in order to increase their margin of profit by reducing the cost, CSP may discard rarely accessed data without detecting in timely fashion. To overcome above issues, flexible distributed storage, token utilizing, signature creations used to ensure integrity of data, auditing mechanism used assists in maintaining the correctness of data and also locating, identifying of server where exactly the data has been corrupted and also dependability and availability of data achieved through distributed storage of data in cloud. Further in order to ensure authorized access to cloud data a admin module has been proposed in our previous conference paper, which prevents unauthorized users from accessing data and also selective storage scheme based on different parameters of cloud servers proposed in previous paper, in order to provide efficient storage of data in the cloud. In order to provide more efficiency in this paper dynamic data operations are supported such as updating, deletion and addition of data.


2021 ◽  
Author(s):  
Yilin Yuan ◽  
Jianbiao Zhang ◽  
Wanshan Xu ◽  
Xiao Wang ◽  
Yanhui Liu

Abstract Under the shared big data environment, most of the existing data auditing schemes rarely consider the authorization management of group users. Meanwhile, how to deal with the shared data integrity is a problem that needs to be pondered. Thus, in this paper, we propose a novel remote data checking possession scheme which achieves group authority management while completing the public auditing. To perform authority management work, we introduce a trusted entity – group manager. We formalize a new algebraic structure operator named authorization invisible authenticator (AIA). Meanwhile, we provide two versions of AIA scheme: basic AIA scheme and standard AIA scheme. The standard AIA scheme is constructed based on the basic AIA scheme and user information table (UIT), with advanced security and wider applicable scenarios. By virtue of standard AIA scheme, the group manager can perfectly and easily carry out authority management, including enrolling, revoking, updating. On the basis of the above, we further design a public auditing scheme for non-revoked users’ shared data. The scheme is based on identity-based encryption (IBE), which greatly reduce the necessary certificate management cost. Furthermore, the detailed security analysis and performance evaluation demonstrate that the scheme is safe and feasible.


Author(s):  
Kayalvili S ◽  
Sowmitha V

Cloud computing enables users to accumulate their sensitive data into cloud service providers to achieve scalable services on-demand. Outstanding security requirements arising from this means of data storage and management include data security and privacy. Attribute-based Encryption (ABE) is an efficient encryption system with fine-grained access control for encrypting out-sourced data in cloud computing. Since data outsourcing systems require flexible access control approach Problems arises when sharing confidential corporate data in cloud computing. User-Identity needs to be managed globally and access policies can be defined by several authorities. Data is dual encrypted for more security and to maintain De-Centralization in Multi-Authority environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yazan Al-Issa ◽  
Mohammad Ashraf Ottom ◽  
Ahmed Tamrawi

Cloud computing is a promising technology that is expected to transform the healthcare industry. Cloud computing has many benefits like flexibility, cost and energy savings, resource sharing, and fast deployment. In this paper, we study the use of cloud computing in the healthcare industry and different cloud security and privacy challenges. The centralization of data on the cloud raises many security and privacy concerns for individuals and healthcare providers. This centralization of data (1) provides attackers with one-stop honey-pot to steal data and intercept data in-motion and (2) moves data ownership to the cloud service providers; therefore, the individuals and healthcare providers lose control over sensitive data. As a result, security, privacy, efficiency, and scalability concerns are hindering the wide adoption of the cloud technology. In this work, we found that the state-of-the art solutions address only a subset of those concerns. Thus, there is an immediate need for a holistic solution that balances all the contradicting requirements.


2014 ◽  
Vol 701-702 ◽  
pp. 1106-1111 ◽  
Author(s):  
Xin Zheng Zhang ◽  
Ya Juan Zhang

As information and processes are migrating to the cloud, Cloud Computing is drastically changing IT professionals’ working environment. Cloud Computing solves many problems of conventional computing. However, the new technology has also created new challenges such as data security, data ownership and trans-code data storage. We discussed about Cloud computing security issues, mechanism, challenges that Cloud service providers and consumers face during Cloud engineering. Based on concerning of security issues and challenges, we proposed several encryption algorithms to make cloud data secure and invulnerable. We made comparisons among DES, AES, RSA and ECC algorithms to find combinatorial optimization solutions, which fit Cloud environment well for making cloud data secure and not to be hacked by attackers.


The tradition of moving applications, data to be consumed by the applications and the data generated by the applications is increasing and the increase is due to the advantages of cloud computing. The advantages of cloud computing are catered to the application owners, application consumers and at the same time to the cloud datacentre owners or the cloud service providers also. Since IT tasks are vital for business progression, it for the most part incorporates repetitive or reinforcement segments and framework for power supply, data correspondences associations, natural controls and different security gadgets. An extensive data centre is a mechanical scale task utilizing as much power as a community. The primary advantage of pushing the applications on the cloud-based data centres are low infrastructure maintenance with significant cost reduction for the application owners and the high profitability for the data centre cloud service providers. During the application migration to the cloud data centres, the data and few components of the application become exposed to certain users. Also, the applications, which are hosted on the cloud data centres must comply with the certain standards for being accepted by various application consumers. In order to achieve the standard certifications, the applications and the data must be audited by various auditing companies. Few of the cases, the auditors are hired by the data centre owners and few of times, the auditors are engaged by application consumers. Nonetheless, in both situations, the auditors are third party and the risk of exposing business logics in the applications and the data always persists. Nevertheless, the auditor being a third-party user, the data exposure is a high risk. Also, in a data centre environment, it is highly difficult to ensure isolation of the data from different auditors, who may not be have the right to audit the data. Significant number of researches have attempted to provide a generic solution to this problem. However, the solutions are highly criticized by the research community for making generic assumptions during the permission verification process. Henceforth, this work produces a novel machine learning based algorithm to assign or grant audit access permissions to specific auditors in a random situation without other approvals based on the characteristics of the virtual machine, in which the application and the data is deployed, and the auditing user entity. The results of the proposed algorithm are highly satisfactory and demonstrates nearly 99% accuracy on data characteristics analysis, nearly 98% accuracy on user characteristics analysis and 100% accuracy on secure auditor selection process


Sign in / Sign up

Export Citation Format

Share Document