An Improved Kidney Tumor Prediction Using Deep Convolutional Neural Network-Restricted Boltzmann Machine Technique in Medical Image Segmentation

2021 ◽  
Vol 11 (12) ◽  
pp. 3191-3198
Author(s):  
P. Ravikumaran ◽  
K. Vimala Devi ◽  
K. Valarmathi

Automatic medical image segmentation has become increasingly important as contemporary medical imaging has become more widely available and used. Existing image segmentation solutions however lack the necessary functionality for simple medical image segmentation pipeline design. Pipelines that have already been deployed are frequently standalone software that has been optimised for a certain public data collection. As a result, the open-source python module deep-Convolutional neural network-Restricted Boltzmann Machine (deep CNNRBM) was introduced in this research work. The goal of Deep CNN-purpose RBMs is to have an easy-touse API that allows for the rapid creation of medical image segmentation transmission lines that include data augmentation, metrics, data I/O pre-processing, patch wise analysis, a library of pre-built deep neural networks, and fully automated assessment. Similarly, comprehensive pipeline customisation is possible because of strong configurability and many open interfaces. The dataset of Kidney tumor Segmentation challenge 2019 (KiTS19) acquired a strong predictor with respect to the standard 3D U-net model after cross-validation using deep CNNRBM. To that purpose, deep CNN-RBM, an expressive deep learning medical image segmentation architecture is introduced. The CNN sub-model captures frame-level spatial features automatically while the RBM submodel fuses spatial data over time to learn higher-level semantics in kidney tumor prediction. A neural network recognises medical picture segmentation, which is initiated using RBM to second-order collected data and then fine-tuned using back propagation to be more differential. According to the simulation outcome, the proposed deep CNN-RBM produced good classification results on the kidney tumour segmentation dataset.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


2018 ◽  
Vol 50 ◽  
pp. 10-14 ◽  
Author(s):  
M. Vardhana ◽  
N. Arunkumar ◽  
Sunitha Lasrado ◽  
Enas Abdulhay ◽  
Gustavo Ramirez-Gonzalez

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Feng-Ping An ◽  
Zhi-Wen Liu

With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors, and textures in the image. It not only consumes considerable energy resources and people’s time but also requires certain expertise to obtain useful feature information, which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, convolutional neural networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Thus, this paper is inspired by the feedback mechanism of the human visual cortex, and an effective feedback mechanism calculation model and operation framework is proposed, and the feedback optimization problem is presented. A new feedback convolutional neural network algorithm based on neuron screening and neuron visual information recovery is constructed. So, a medical image segmentation algorithm based on a feedback mechanism convolutional neural network is proposed. The basic idea is as follows: The model for obtaining an initial region with the segmented medical image classifies the pixel block samples in the segmented image. Then, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method has not only high segmentation accuracy but also extremely high adaptive segmentation ability for various medical images. The research in this paper provides a new perspective for medical image segmentation research. It is a new attempt to explore more advanced intelligent medical image segmentation methods. It also provides technical approaches and methods for further development and improvement of adaptive medical image segmentation technology.


Sign in / Sign up

Export Citation Format

Share Document