Analysis of Temperature Sensors Based on Ternary One Dimensional Photonic Crystals with Double Defects

2019 ◽  
Vol 14 (11) ◽  
pp. 1532-1538 ◽  
Author(s):  
S. E.-S. Abd El-Ghany

Based on the transfer matrix method (TMM), the interaction of electromagnetic waves in ultraviolet (Uv), visible and Infrared (IR) spectra with ternary one-dimensional photonic crystals with different double defects, has been theoretically studied. The multilayer system has been taken as temperature dependent. The numerical results showed that the number of photonic band gap (PBG) was increased by increasing the degree of temperature. The variation of temperature, the thickness of the second layer and both the type and the thickness of the second defect caused shifting of the photonic ban gaps to higher wavelengths which can be exploited in the design of temperature sensors.

2012 ◽  
Vol 614-615 ◽  
pp. 1629-1632
Author(s):  
Gang Xu ◽  
Yun Sun

Applying transfer matrix method, we get reflection and transmission coefficient of finite one dimensional photonic crystals. At the same time, we consider the position influence of single defect. We find the frequency of defect mode is same, but the height of transmission peak is not same when single defect is in different position of crystal. The transmission peak is maximum when the defect is in center of finite one dimensional photonic crystals.


2020 ◽  
Vol 54 (8) ◽  
pp. 085106
Author(s):  
Haiyun Tan ◽  
Mingjie Zhou ◽  
Lanjian Zhuge ◽  
Xuemei Wu

2014 ◽  
Vol 576 ◽  
pp. 27-31
Author(s):  
Gai Mei Zhang ◽  
Can Wang ◽  
Yan Jun Guo ◽  
Wang Wei ◽  
Xiao Xiang Song

The photonic crystal has the property that electromagnetic waves with interval of frequency in photonic band gap (PBG) can not be propagated, so it has important applying and researching value. The traditional one-dimensional photonic crystal is with narrow band gap width, and the reflection within the band is small, especially the band gap is sensitive to the incident angle and the polarization of light. A new photonic band gap (PBG) structure, metallodielectric photonic crystal by inserting metal film in the medium can overcomes the shortcomings mentioned above. The one-dimensional Ag/SiOx photonic crystal was prepared, and theoretical and experimental researches were developed. The results show that photonic band gap appears gradually and the band gap width increase with increasing of period of repeating thickness. With the thickness of Ag film increasing, the band gap width increases, but the starting wavelength of the photonic band gap keeps unchanged. With thickness of SiOx film increasing, the band gap width of photonic band gap also increases, but it is not obvious and starting wavelength increases.


2007 ◽  
Vol 31 ◽  
pp. 7-10
Author(s):  
A. Soltani Vala ◽  
J. Barvestani ◽  
M. Kalafi

An analytical direct matching procedure within the Kronig-Penney model applied to analyze the dispersion behavior of the localized surface states supported in the surface of a semiinfinite one-dimensional photonic crystals truncated with air. The photonic crystal containing alternating layers of positive and negative media. In the case of the conventional indices, as the incident light changes from normal to oblique incidence, the surface modes shifts into higher frequencies. For this reason, the phenomenon of photonic band gap has been used only under a narrow range of frequencies of light incident at a particular angle or in a particular angular range. We have showed that by choosing some proper value for the PC parameters, zero and negative dispersion of surface modes emerge in a large range of k|| , and, due to the different nature of the band structure the surface modes are more localized compared to those appeared in the conventional PC.


Sign in / Sign up

Export Citation Format

Share Document