Modeling and Analysis of Organic Light Emitting Diode with Thin Film Anti-Reflective Coatings

2020 ◽  
Vol 15 (4) ◽  
pp. 425-431
Author(s):  
B. M. Chaya ◽  
Prasant Kumar Pattnaik ◽  
K. Narayan

The effects of anti-reflective coatings (ARC) on organic light emitting diode (OLED) optical characteristics are reported in this paper. The light output produced from the OLED is not 100%. But the emitted light is trapped due to various Modes. The losses at the glass air substrate interfaces of an OLED are addressed in this work. The Anti-Reflective coatings increase the light output by reducing OLED reflections at the interface between glass and air. The Finite Difference Time Domain (FDTD) method and the Fresnel theory have been used to design the device and study the effects on OLED of the Single Layer Anti-Reflective Coating (SLAR) and Double Layer Anti-Reflective Coating (DLAR). The thicknesses and refractive indices of the layers of the anti-reflective coatings were optimized. We also compared the light out coupling power efficiency of the SLAR coated OLED with that of an OLED with a DLAR coating and also with Conventional OLED. The results show that the enhancement in light output efficiency of the DLAR coated OLED was slightly higher than that of the SLAR coated OLED.

2018 ◽  
Vol 32 (27) ◽  
pp. 1850299
Author(s):  
Pei Wang ◽  
Zhen Wang ◽  
Ai Chen ◽  
Jia-Feng Xie ◽  
Xin Zheng

In this paper, combining phosphorescence and fluorescence to form white light was realized based on DCJTB:PMMA/ITO/NPB/TCTA/FIrpic:TCTA/TPBi/Ir(ppy)3:TPBi/TPBi/Cs2CO3/Al. The effects of red fluorescence on this white light device was studied by adjusting the concentration of DCJTB. The study shows that the device with a DCJTB concentration of 0.7% in the color conversion layer (CCL) generates a peak current efficiency and power efficiency of 23.4 cd ⋅ A[Formula: see text] and 7.5 lm ⋅ W[Formula: see text], respectively. And it is closest to the equal-energy white point of (0.33, 0.33) which shows a CIE (Commission Internationale de L’Eclairage) coordinate of (0.35, 0.43) and a color rendering index (CRI) of 70 at current density of 10 mA ⋅ cm[Formula: see text]. In order to improve the efficiency, we design and fabricate both high efficient and pure white organic light-emitting diode (WOLED) by replacing the single blue emission layer (EML) with double EMLs of FIrpic:TCTA and FIrpic:TPBi. The further study shows that, when the layers of EML is three and the concentration of DCJTB at 0.7%, the device exhibits good performance specifically, at current density of 10 mA ⋅ cm[Formula: see text], the current efficiency of 28.2 cd ⋅ A[Formula: see text] (power efficiency of 10.3 lm ⋅ W[Formula: see text]), and the CIE coordinate of (0.33, 0.31) (CRI of 80.38).


RSC Advances ◽  
2018 ◽  
Vol 8 (15) ◽  
pp. 8402-8411 ◽  
Author(s):  
Jayaraman Jayabharathi ◽  
Sekar Panimozhi ◽  
Venugopal Thanikachalam ◽  
Annadurai Prabhakaran ◽  
Palanivel Jeeva

Ti-doped ZrO2 facilitates electron injection effectively, leading to enhanced current efficiency of 2.84 cd A−1 and power efficiency of 1.32 lm W−1


2006 ◽  
Vol 99 (6) ◽  
pp. 064509 ◽  
Author(s):  
S. J. Konezny ◽  
D. L. Smith ◽  
M. E. Galvin ◽  
L. J. Rothberg

2007 ◽  
Vol 364-366 ◽  
pp. 1072-1076
Author(s):  
Rui Li Song ◽  
Yu Duan

An efficient phosphorescent white organic light-emitting diode (WOLED) was realized by using a bright blue-emitting layer, iridium (III) bis [(4, 6-di-fluoropheny)-pyridinato-N, C2’] picolinate doped 4.4’-bis (9-carbazolyl)-2, 2’-dimethyl-biphenyl, together with tris (2- Phenylpyridine) iridium and bis (1-phenyl-isoquinoline) acetylacetonate iridium (III) were codoped into 4,4’-N,N’-dicarbazole-biphenyl layer to provide blue, green, and red emission for color mixing. The device emission color was controlled by varying dopant concentrations and the thickness of blue and green-red layers as well as tuning the thickness of exciton-blocking layer. The maximum luminance and power efficiency of the WOLED were 37100cd/m2 at 17 V and 7.37lm/W at 5V, respectively. The Commission Internationale de 1’Eclairage (CIE) chromaticity coordinate changes from (0.41, 0.42) to (0.37, 0.39) when the luminance rangeed from 1000cd/m2 to 30000cd/m2.


2000 ◽  
Vol 320 (5-6) ◽  
pp. 387-392 ◽  
Author(s):  
Y.D. Jin ◽  
J.P. Yang ◽  
P.L. Heremans ◽  
M. Van der Auweraer ◽  
E. Rousseau ◽  
...  

2011 ◽  
Vol 64 (2) ◽  
pp. 160 ◽  
Author(s):  
Yan Zhou ◽  
Lin Ding ◽  
Li-Ming Xiang ◽  
Jian Pei

Two deep blue-emitting dendrimers 11 and 12 with carbazole containing dendrons were developed in this contribution. The carbazole-containing units were introduced to tune the charge-transporting property of the desired dendrimers. The investigation of photophysical properties, electrochemical, and electroluminescence properties demonstrated that the balance between electron and hole transporting was achieved from both dendrimers. The preliminary organic light-emitting diode (OLED) fabrication achieved a pure blue colour with stable CIE chromaticity coordinates (X: 0.15–0.16, Y: 0.09–0.10) for 11 and 12. Single layer deep blue emitting diode devices with higher efficiency are achieved without the colour changing. The investigation of OLED performance indicates that dendrimers 11 and 12 are promising light-emitting materials with pure blue colour and good colour stability for OLEDs.


Sign in / Sign up

Export Citation Format

Share Document