reflective coating
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 79)

H-INDEX

16
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhixin Wang ◽  
Filippos Kapsalidis ◽  
Ruijun Wang ◽  
Mattias Beck ◽  
Jérôme Faist

AbstractSemiconductor lasers with extremely low threshold power require a combination of small volume active region with high-quality-factor cavities. For ridge lasers with highly reflective coatings, an ultra-low threshold demands significantly suppressing the diffraction loss at the facets of the laser. Here, we demonstrate that introducing a subwavelength aperture in the metallic highly reflective coating of a laser can correct the phase front, thereby counter-intuitively enhancing both its modal reflectivity and transmissivity at the same time. Theoretical and experimental results manifest a decreasing in the mirror loss by over 40% and an increasing in the transmissivity by 104. Implementing this method on a small-cavity quantum cascade laser, room-temperature continuous-wave lasing operation at 4.5 μm wavelength with an electrical consumption power of only 143 mW is achieved. Our work suggests possibilities for future portable applications and can be implemented in a broad range of optoelectronic systems.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Yang Lu ◽  
Md Asif Rahman ◽  
Nicholas W. Moore ◽  
Aidin J. Golrokh

Many studies were conducted to find possible strategies for reducing the urban heat island (UHI) effect during the hot summer months. One of the largest contributors to UHI is the role that paved surfaces play in the warming of urban areas. Solar-reflective cool pavements stay cooler in the sun than traditional pavements. Pavement reflectance can be enhanced by using a reflective surface coating. The use of heat-reflective coatings to combat the effects of pavements on UHI was previously studied but no consistent conclusions were drawn. To find a conclusive solution, this work focuses on the abilities of heat-reflective pavement coatings to reduce UHI in varying weather conditions. Within this context, both concrete and asphalt samples were subject to a series of performance tests when applied to a heat-reflective coating, under the influence of normal, windy, and humid conditions. During these tests, the samples were heated with a halogen lamp and the surface temperature profile was measured using an infrared thermal camera. The air temperature was recorded with a thermometer, and the body temperature at multiple depths of the samples was measured using thermocouples. The results from these tests show that the effectiveness of the heat-reflective coating varies under different weather conditions. For instance, the coated samples were about 1 °C cooler for concrete and nearly 5 °C cooler for asphalt, on average. However, this temperature difference was reduced significantly under windy conditions. As such, the findings from this work conclude that the heat-reflective coatings can effectively cool down the pavement by increasing the surface albedo, and thus might be a viable solution to mitigate UHI impacts in the city/urban areas.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3444
Author(s):  
Brecken Larsen ◽  
Christopher Ausbeck ◽  
Timothy F. Bennet ◽  
Gilberto DeSalvo ◽  
Riccardo DeSalvo ◽  
...  

Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings’ inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining.


2021 ◽  
pp. 1-19
Author(s):  
Akash Kumar Sahu ◽  
Rudrarapu Aravind ◽  
Gouri Sankhar Brahma ◽  
Trilochan Swain

Abstract Herein, the synthesis of the novel and inexpensive phosphate mixtures (calcined and non-calcined) of iron (Fe) and sodium (Na) and their application as reflective coating with building envelope materials is reported. The main objective of this work is to determine the effect of hydrated mixtures as a reflective coating. To obtain different hydrated mixtures, samples were synthesized as both calcined and non-calcined mixtures. Various measurement techniques were used to characterize and study the thermal behavior of mixtures. From the thermal behavior of the mixtures, it is noticed that the mixtures can be used as heat-dissipating materials. The average crystallite size was found 40.18 nm and 25.48 nm for the calcined and the non-calcined mixtures, respectively. The calculated band gap for the calcined mixture is 3.71 eV and the non-calcined mixture is 3.73 eV. According to Reddy's equation, the refractive index of the calcined and the non-calcined mixtures is 2.61 and 2.60, respectively. Both the calcined (1A) and the non-calcined (1B) mixtures were fabricated with commercial white paint to develop aesthetic light gray coatings. Both coatings were painted and tested on two building material slabs separately. Then, the highest reflective coating material between these two was painted on a house prototype and tested against commercial gray paint available in the market. An average temperature reduction of 3.8 K was observed in modified gray coating compared to commercial building paint. The reflective coating of the calcined mixture blended with white paint was observed to be better than the non-calcined mixture blended with white paint.


Author(s):  
Yong Yi ◽  
Yingjun Jiang ◽  
Jiangtao Fan ◽  
Yu Zhang ◽  
Changqing Deng ◽  
...  

2021 ◽  
Vol 2044 (1) ◽  
pp. 012022
Author(s):  
Nanxiang Zheng ◽  
Zhifeng Li ◽  
Zebin Li ◽  
Qunbao Fan ◽  
Jianpeng Deng

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3333
Author(s):  
Soon Hyuk Lim ◽  
Nguyễn Hoàng Ly ◽  
Jung A. Lee ◽  
Ji Eun Kim ◽  
Se-Woong La ◽  
...  

This work introduces a facile geometry-controlled method for the fabrication of embossed and engraved polymeric moth-eye-inspired nanostructures in imprinting molds using anodic aluminum oxide (AAO) templates, resulting in a novel anti-reflective transparent coating. The moth-eye nanostructures are prepared directly on the surface of a flexible polyethylene terephthalate (PET) substrate. As a prerequisite procedure, a UV-curable polyurethane acrylate resin is spun on the PET. The shape of the moth-eye nanostructures can then be adjusted by controlling the size and shape of the nanopores in the AAO templates. Both embossed and concaved polymer moth-eye nanostructures were successfully mounted on a PET substrate. Embossed polymer replica molds were prepared using the AAO master templates in combination with an imprinting process. As revealed by field-emission electron microscope (FE-SEM) images, conical nanopatterns in the AAO template with a diameter of ~90 nm and a depth of ~100 nm, create a homogeneous embossed morphology in the polymer moth-eye nanostructure. The polymeric molds with the depths of 300 and 500 nm revealed the amalgamated structures in their apexes. In addition, a dip-imprinting process of the polymeric layers was implemented to yield a concaved mold by assembly on the surface of the 100 nm embossed polymer mold substrate. Considering that the embossed structures may be crumbled due to their protuberant shapes, the concaved geometries can have an advantage of stability in a certain application concerning physical degradation along with a higher transmission by ~2%, despite somewhat nonuniform structure. The experimental and theoretical results of this study indicate that this polymer layer has the potential for use in anti-reflective coating applications in transparent films.


2021 ◽  
pp. 103910
Author(s):  
Alp Eren Sinan Özhan ◽  
Tuğçe Hacaloğlu ◽  
Bilgin Kaftanoğlu

Sign in / Sign up

Export Citation Format

Share Document