Hybrid Supercapacitors Based on Self-Assembled Electrochemical Deposition of Reduced Graphene Oxide/Polypyrrole Composite Electrodes

2021 ◽  
Vol 16 (6) ◽  
pp. 949-956
Author(s):  
Jun Ma ◽  
Junaid Ali Syed ◽  
Dongyun Su

Conductive polymers (CPs) have potential application to commercial energy storage because of their high electrochemical activity and low cost. However, an obstacle in developing CP-based supercapacitors is the degradation in their capacitance during the charge-discharge process that leads to poor rate performance. This study fabricates layers of a high-performance self-assembled polypyrrole/reduced graphene oxide (PPY/RGO) composite material on a carbon cloth through electrochemical deposition. The layered graphene improved the electrochemical properties of PPY. Carbon fiber rods were coated with the PPY/RGO composite layer, the thickness of which depends on the deposition time. Adequate capacitive behaviors were achieved by using 16 layers of polypyrrole/reduced graphene oxide, with a specific capacitance of 490 F g−1 (0.6 A g−1) and good rate performance. The results here provide a novel means of preparing graphene-based nanocomposites films for a variety of functions. A symmetric device was subsequently assembled by using electrodes featuring 16 layers of the polypyrrole/reduced graphene oxide composite. It yielded a specific capacitance of 205 F g−1 and a high energy density of 16.4 Wh kg−1. It also exhibited good cycle stability, with a capacitance retention rate of 85% for 5,000 cycles.

RSC Advances ◽  
2015 ◽  
Vol 5 (35) ◽  
pp. 27940-27945 ◽  
Author(s):  
Ji Yan ◽  
Gregory Lui ◽  
Ricky Tjandra ◽  
Xiaolei Wang ◽  
Lathankan Rasenthiram ◽  
...  

α-NiS combined with SWNTs and graphene exhibits high specific capacitance, and excellent rate performance and cycling stability.


2021 ◽  
Vol 63 (12) ◽  
pp. 1184-1190
Author(s):  
Yifan Cui ◽  
Rong Li ◽  
Liuqin Lai ◽  
Huimin Dai ◽  
Siyu Su ◽  
...  

Abstract The chemical reduction of graphene oxide is an effective method for the synthesis of reduced graphene oxide, having the obvious advantages of low cost and large scale applicability. Our work produced reduced graphene oxide through a simple water bath reduction approach using various reducing agents of N2H4 × H2O, NaBH4, Na2S2O3, HI, and a reference sample without reducing agent at the same reduction temperature and duration time, by which reduced graphene oxides represented as N-RGO, B-RGO, S-RGO, I-RGO, and RGO0 were fabricated. Subsequently, unbonded flexible electrodes based on carbon cloth were fabricated with the reduced graphene oxides mentioned above, whereupon the structure, morphology and electrochemical performance were characterized. The electrochemical results indicate that the order of specific capacitances is N-RGO > B-RGO > S-RGO > RGO0 > I-RGO, while I-RGO’s potential window is wider than that of the others. As a result, N-RGO displays the best electrochemical performance among all reduced graphene oxides, with a specific capacitance as high as 176.0 F × g-1 and 77.8 % of the initial specific capacitance maintained at a high current density of 20 A × g-1.


2009 ◽  
Vol 95 (10) ◽  
pp. 103104 ◽  
Author(s):  
Yanwu Zhu ◽  
Weiwei Cai ◽  
Richard D. Piner ◽  
Aruna Velamakanni ◽  
Rodney S. Ruoff

2017 ◽  
Vol 4 (11) ◽  
pp. 3004-3010 ◽  
Author(s):  
Bo Chen ◽  
Yifan Tian ◽  
Zhaoxi Yang ◽  
Yunjun Ruan ◽  
Jianjun Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document