Comparison of reduced graphene oxides synthesized chemically with different reducing agents for supercapacitors

2021 ◽  
Vol 63 (12) ◽  
pp. 1184-1190
Author(s):  
Yifan Cui ◽  
Rong Li ◽  
Liuqin Lai ◽  
Huimin Dai ◽  
Siyu Su ◽  
...  

Abstract The chemical reduction of graphene oxide is an effective method for the synthesis of reduced graphene oxide, having the obvious advantages of low cost and large scale applicability. Our work produced reduced graphene oxide through a simple water bath reduction approach using various reducing agents of N2H4 × H2O, NaBH4, Na2S2O3, HI, and a reference sample without reducing agent at the same reduction temperature and duration time, by which reduced graphene oxides represented as N-RGO, B-RGO, S-RGO, I-RGO, and RGO0 were fabricated. Subsequently, unbonded flexible electrodes based on carbon cloth were fabricated with the reduced graphene oxides mentioned above, whereupon the structure, morphology and electrochemical performance were characterized. The electrochemical results indicate that the order of specific capacitances is N-RGO > B-RGO > S-RGO > RGO0 > I-RGO, while I-RGO’s potential window is wider than that of the others. As a result, N-RGO displays the best electrochemical performance among all reduced graphene oxides, with a specific capacitance as high as 176.0 F × g-1 and 77.8 % of the initial specific capacitance maintained at a high current density of 20 A × g-1.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Salisu Nasir ◽  
Mohd Zobir Hussein ◽  
Zulkarnain Zainal ◽  
Nor Azah Yusof

This paper is an expansion of our previous work on the synthesis of graphene oxides and reduced graphene oxides from different kinds of oil palm waste-based feedstocks, namely, OPL (oil palm leaf), PKS (palm kernel shell), and EFB (empty fruit bunch). Here, the electrochemical measurements of the resulting reduced graphene oxides derived via mild-temperature annealing reduction of the graphene oxides were accomplished using cyclic voltammetry and galvanostatic charge/discharge processes. The findings put forward their promising features for supercapacitor applications. For instance, the reduced graphene oxide derived using EFB precursor (rGOEFB) which has a BET surface area of 117 m2 g-1 exhibits a specific capacitance of 688 F g−1 at an applied current density of 0.8 A g-1. This is higher than that observed for reduced graphene oxides derived from oil palm leaf (rGOOPL), palm kernel shell (rGOPKS), and the commercially acquired graphite (rGOCG), which possessed specific capacitance values of 632, 424, and 220 F g−1, respectively. It can be deduced that the specific capacitance of the reduced graphene oxide samples increases in the following order: (rGOCG) < (rGOPKS) < (rGOOPL) < (rGOEFB). In summary, these new classes of carbon-based nanomaterials could be applied as efficient electrode materials for supercapacitor application with potential good performance. With this novel green and sustainable approach, various carbon-based nanomaterials can be fabricated for a broad range of multifunctional applications.


2021 ◽  
Vol 16 (6) ◽  
pp. 949-956
Author(s):  
Jun Ma ◽  
Junaid Ali Syed ◽  
Dongyun Su

Conductive polymers (CPs) have potential application to commercial energy storage because of their high electrochemical activity and low cost. However, an obstacle in developing CP-based supercapacitors is the degradation in their capacitance during the charge-discharge process that leads to poor rate performance. This study fabricates layers of a high-performance self-assembled polypyrrole/reduced graphene oxide (PPY/RGO) composite material on a carbon cloth through electrochemical deposition. The layered graphene improved the electrochemical properties of PPY. Carbon fiber rods were coated with the PPY/RGO composite layer, the thickness of which depends on the deposition time. Adequate capacitive behaviors were achieved by using 16 layers of polypyrrole/reduced graphene oxide, with a specific capacitance of 490 F g−1 (0.6 A g−1) and good rate performance. The results here provide a novel means of preparing graphene-based nanocomposites films for a variety of functions. A symmetric device was subsequently assembled by using electrodes featuring 16 layers of the polypyrrole/reduced graphene oxide composite. It yielded a specific capacitance of 205 F g−1 and a high energy density of 16.4 Wh kg−1. It also exhibited good cycle stability, with a capacitance retention rate of 85% for 5,000 cycles.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5032
Author(s):  
Akhalakur Rahman Ansari ◽  
Sajid Ali Ansari ◽  
Nazish Parveen ◽  
Mohammad Omaish Ansari ◽  
Zurina Osman

In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition. The electrochemical performance of prepared samples was studied by cyclic voltammetry and galvanostatic charge-discharge in a 2M KOH electrolyte solution. The CuO nanosheets provided excellent electrical conductivity and the rGO sheets provided a large surface area with good mesoporosity that increases electron and ion mobility during the redox process. Furthermore, the highly conductive Ag nanoparticles upon the rGO@CuO surface further enhanced electrochemical performance by providing extra channels for charge conduction. The ternary Ag-rGO@CuO nanocomposite shows a very high specific capacitance of 612.5 to 210 Fg−1 compared against rGO@CuO which has a specific capacitance of 375 to 87.5 Fg−1 and the CuO nanosheets with a specific capacitance of 113.75 to 87.5 Fg−1 at current densities 0.5 and 7 Ag−1, respectively.


RSC Advances ◽  
2017 ◽  
Vol 7 (51) ◽  
pp. 32310-32315 ◽  
Author(s):  
Ya Chen ◽  
Ling Wang ◽  
Yanan Zhai ◽  
Heyin Chen ◽  
Yibo Dou ◽  
...  

A composite material of Pd–Ni nanoparticles supported on reduced graphene oxide (Pd–Ni/rGO) has been synthesised via an in situ reduction of PdO/Ni(OH)2 nanoparticles on GO.


2019 ◽  
Vol 55 (76) ◽  
pp. 11438-11441 ◽  
Author(s):  
Thaar M. D. Alharbi ◽  
Amira R. M. Alghamdi ◽  
Kasturi Vimalanathan ◽  
Colin L. Raston

Reduced graphene oxide (rGO) is generated from GO dispersed in water under continuous flow in the absence of harsh reducing agents, in a vortex fluidic device, such that the processing is scalable with uniformity of the product.


2016 ◽  
Vol 4 (40) ◽  
pp. 15302-15308 ◽  
Author(s):  
Zhigao Luo ◽  
Jiang Zhou ◽  
Lirong Wang ◽  
Guozhao Fang ◽  
Anqiang Pan ◽  
...  

We report the synthesis of a novel 2D hybrid nanosheet constructed by few layered MoSe2 grown on reduced graphene oxide (rGO), which exhibits excellent electrochemical performance as anodes for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document